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Abstract

Function-as-a-Service (FaaS) has become a popular program-
ming paradigm in Serverless Computing. As the responsi-
bility of resource provisioning shi�s from users to cloud
providers, the ease of use of FaaS for users may come at the
expense of extra hardware costs for cloud providers. Cur-
rently, there is no report on how FaaS platforms address this
challenge and the level of hardware utilization they achieve.
�is paper presents the FaaS platform called XFaaS in

Meta’s hyperscale private cloud. XFaaS currently processes
trillions of function calls per day on more than 100,000
servers. We describe a set of optimizations that help XFaaS
achieve a daily average CPU utilization of 66%. Based on
our anecdotal knowledge, this level of utilization might be
several times higher than that of typical FaaS platforms.
Speci�cally, to eliminate the cold start time of functions,

XFaaS strives to approximate the e�ect that every worker can
execute every function immediately. To handle load spikes
without over-provisioning resources, XFaaS defers the ex-
ecution of delay-tolerant functions to o�-peak hours and
globally dispatches function calls across datacenter regions.
To prevent functions from overloading downstream services,
XFaaS uses a TCP-like congestion-control mechanism to
pace the execution of functions.

CCS Concepts: •Computer systems organization→Dis-

tributed architectures; Cloud computing; Reliability.
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1 Introduction

In recent years, Function as a Service (FaaS) [29] has become
a popular programming paradigm in Serverless Computing.
With FaaS, developers can create individual functions and
upload them to a cloud provider’s FaaS platform, where the
functions are executed in response to external events. �e
FaaS platform automatically provisions resources to run a
function when it is triggered, freeing developers from the
burden of managing virtual machines (VM) or containers.
Examples of FaaS platforms include AWS Lambda [4], Azure
Functions [5], and Google Cloud Functions [17].

However, the ease of use of FaaS for users may come at the
expense of extra hardware costs for cloud providers. Prior
to FaaS, users were responsible for the cost for underuti-
lized VMs that were over-provisioned to handle intermi�ent
function calls. With FaaS, as the responsibility of resource
provisioning shi�s from users to cloud providers, the cost of
over-provisioned resources will be borne by cloud providers.
It was reported that, in Azure Functions, “81% of the appli-

cations are invoked once per minute or less on average. �is

suggests that the cost of keeping these applications warm, rela-

tive to their total execution (billable) time, can be prohibitively

high [39].” Despite FaaS being a popular topic in research,
the research community lacks a quantitative understanding
of this problem, mainly due to the absence of reports on the
actual hardware utilization of large-scale FaaS platforms, let
alone solutions to this problem.
At Meta, we operate a hyperscale private cloud that in-

cludes a FaaS platform calledXFaaS. XFaaS processes trillions
of function calls per day on more than 100,000 servers spread
across tens of datacenter regions. Due to the hyperscale of
XFaaS, reducing hardware costs is a top priority for us. Be-
low, we �rst describe the risk of extra hardware costs and
then explain how we tackle them in XFaaS.
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INITIALIZATION PHASE:

(1) Start the VM.

(2) Fetch the container image and the function's code.

(3) Initialize the container.

(4) Start the language runtime such as Python or PHP.

(5) Load common libraries into memory.

(6) Load the function code into memory.

(7) Optionally, do JIT compilation.

INVOCATION PHASE:

(8) Invoke the function multiple times as needed.

SHUTDOWN PHASE:

(9) Stop the container if it receives no requests for X minutes

(X=10/20/10 minutes for AWS/Azure/OpenWhisk respectively).

(10) Optionally, stop the VM.

Figure 1. Lifecycle of a function.

1.1 Risk of Extra Hardware Costs

Lengthy cold start time. A signi�cant challenge of FaaS is
the lengthy cold-start time of a function, which can result
in prolonged response times and hardware ine�ciencies.
Figure 1 shows the lifecycle of a function, where steps (1)-(7)
and (9)-(10) are all overheads and their costs are borne by the
cloud provider. Only step (8) performs the actual work that
can be charged to FaaS users. If the wait time Ĕ in step (9) is
too long, the container sits idle and is wasted. Conversely,
if the wait time is too short, the container is shut down too
quickly, and the next request must go through the overheads
in steps (1)-(7) to initialize the function again.

High variance of load. A high variance in the load can
result in either extra hardware costs due to over-provisioning,
or an overloaded system when the load surges. Shahrad et al.
reported that the peak-to-trough ratio of function calls in
Azure Functions is approximately two [39]. �is ratio is even
more skewed in XFaaS, as high as 4.3 (see the “Received”
curve in Figure 2). �erefore, XFaaS runs the risk of severe
waste if resources are provisioned to handle the peak load.

Overloading downstream services. Even if a FaaS plat-
form can perfectly manage its own load, its functions can
still cause resource contention at the downstream services
that they invoke. For instance, in XFaaS, many functions do
o�ine computation on our social-graph database [9], which
is also accessed by our online services that serve billions of
users. In the past, we experienced outages caused by a spike
in calls from non-user-facing functions overloading the data-
base and resulting in a high error rate for user-facing online
services. Existing systems like AWS Lambda set a static con-
currency limit per function, which is insu�cient. If the limit
is set too low, both the FaaS platform and the database will
waste unused resources. Conversely, se�ing the limit too
high may result in a high error rate for the online services.

1.2 Solutions for Extra Hardware Costs

Solution for cold start time. To maximize hardware e�-
ciency, we want to achieve or closely approximate the e�ect
of a universal worker, where every worker can instantly exe-
cute every function without any cold start overhead.
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Figure 2. Received vs. executed function calls per minute.

We use several techniques to eliminate the cold start time
of functions. First, XFaaS proactively pushes the latest code of
all functions of the same programming language (e.g., PHP)
to the local SSD disk of all servers that execute functions of
this language. �ese servers keep the language runtime up
and running all the time. Upon receiving a call for a func-
tion for the �rst time, the runtime loads the pre-populated
function code from its local SSD and executes it immediately,
skipping steps (1)-(5) in Figure 1.
Second, XFaaS runs multiple functions concurrently in

one Linux process, enabled by the high degree of trust in
a private cloud. XFaaS enforces resource isolation through
�ne-grained quotas and ensures data isolation using a Bell-
La-Padula style information �ow approach [7].

�ird, XFaaS skips steps (6)-(7) for regularly invoked func-
tions through cooperative JIT compilation. While running
a new version of a function’s code, one server collects the
pro�ling data needed for JIT compilation and pushes it to
other servers, enabling them to pre-compile the function.

Finally, to improve the hit rate of the JIT code cache, which
helps skip steps (6)-(7), XFaaS ensures that only calls for a
subset of functions, rather than all functions, are dispatched
to a given server. XFaaS dynamically adjusts this subset for
each server in response to global load changes.
Overall, these techniques allow XFaaS to eliminate the

overhead of steps (1)-(5) and (9)-(10) for all functions and
further eliminate the overhead of steps (6)-(7) for functions
that are regularly invoked.

Solution for high variance of load. To reduce hardware
costs, we intentionally provision XFaaS with hardware that
is insu�cient for its peak demand and then leverage several
techniques to manage overload situations. First, it employs
time-shi� computing to postpone the execution of certain
functions. Each function has a criticality and a deadline,
with the deadline ranging from seconds to 24 hours. When
XFaaS reaches its capacity limit, delay-tolerant functions are
deferred to o�-peak hours for execution. If the capacity is still
insu�cient to run all functions with a short deadline, low-
criticality functions are also deferred. Second, XFaaS globally
dispatches function calls across datacenter regions to balance
the load. �ird, XFaaS de�nes a quota for each function
and thro�les functions that exceed their quota. Finally, it
allows the caller to specify a future execution start time for
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a function instead of executing it immediately, which helps
spread out the load in a predictable manner.

�anks to these optimizations, the curve of the “Executed”
functions in Figure 2 is much less spiky compared to the
curve of the “Received” function calls. Consequently, XFaaS
only needs to provision su�cient capacity to match the “Ex-
ecuted” curve instead of the “Received” curve.

Solution for overloading downstream services. XFaaS
addresses this problem through adaptive concurrency control.
First, it leverages a global resource isolation andmanagement
(RIM) system to enforce resource isolation across distributed
components. Instead of making decisions locally, RIM col-
lects global metrics across di�erent systems to assist XFaaS
operate in real-time coordination with downstream services.
Second, downstream services can send back-pressure signals
to XFaaS. In response, XFaaS uses a TCP-like congestion-
control mechanism to pace the execution of functions.

Contributions. We make the following contributions:

• �is is the �rst work that uses production data to shed
light on whether the ease of use of FaaS comes at the ex-
pense of extra hardware costs for the FaaS platform.With
a set of optimizations, XFaaS achieves a daily average
CPU utilization of 66%. Based on our anecdotal knowl-
edge in the industry, this level of utilization might be
several times higher than that of typical FaaS platforms,
despite the much spikier load in XFaaS.

• Wepropose a holistic set of techniques that work together
to closely approximate the e�ect of a universal worker,
where every worker can instantly execute every function
without any cold start overhead.

• We propose a holistic set of techniques to manage load
spikes, including time-shi� computing, dispatching func-
tion calls across datacenter regions, and prioritizing func-
tion execution based on criticality and quota. None of
these have been applied to FaaS before.

• We propose adaptive concurrency control to prevent func-
tions from overloading downstream services. �is prob-
lem has not been studied in FaaS before.

2 Background

To set the stage for future discussions, we provide some
background on FaaS in our private cloud.

2.1 Rapid Growth of FaaS in Our Private Cloud

As the popularity of FaaS has been growing rapidly in public
clouds, one may wonder whether a private cloud has suf-
�cient FaaS workloads to support similar growth. Figure 3
shows that the number of daily function invocations in XFaaS
has increased 50 times over the past 5 years, currently total-
ing trillions of function calls daily. �e rapid growth at the
end of 2022 is due to the launch of a new feature that allows
for the use of Ka�a-like data streams [12] to trigger function
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Figure 3. Growing popularity of FaaS in our private cloud.

calls. Overall, the rapid adoption of XFaaS shows that FaaS
is a successful programming paradigm that is equally appli-
cable to both public and private cloud environments. �e
hyperscale of XFaaS requires us to e�ciently use hardware,
especially in coping with spiky loads.

2.2 Spiky Load

�e clients of XFaaS submit function calls in a highly spiky
manner, as depicted by the “Received” curve in Figure 2.
�e peak demand is 4.3 times higher than the o�-peak de-
mand. �e midnight peak is caused by function calls trig-
gered by Hive-like [24] big-data pipelines that create data
tables around midnight. �e availability of the data triggers
the invocation of many functions at a high volume. As a
speci�c example, Figure 4 illustrates the spiky load of a func-
tion with almost 20 million function calls submi�ed within
a 15-minute time window. Allocating capacity to accom-
modate the peak demand indiscriminately would result in
considerable hardware waste during o�-peak times.

One of our key insights is that certain XFaaS functionsmay
not need immediate execution. Most XFaaS functions are
triggered by queue, timer, storage, orchestration and event
bridge work�ows. �ese functions tend to be more delay-
tolerant than functions triggered through direct RPC like
HTTP. Functions with relaxed latency expectations, present
opportunities for smoothing out the load.
XFaaS adopts a holistic set of techniques to handle spiky

loads. When necessary, it defers the execution of delay-
tolerant functions and low-criticality functions. Moreover, it
globally dispatches function calls across datacenter regions
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Figure 4. �e load of a spiky function. �is function allows
its function calls to be executed with a 24-hour SLO. XFaaS
leverages this property to spread out its function execution.
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to balance the load. Additionally, it enforces a per-function
quota to ensure fairness. Finally, it allows the caller to spec-
ify a future time for function execution, which spreads out
the load in a predictable manner. In combination, these tech-
niques drastically reduce spikes in function execution, as
demonstrated by the “Executed” curves in Figures 2 and 4.

2.3 Datacenters and Uneven Hardware Distribution

Our private cloud comprises tens of datacenter regions and
millions of machines. Each region comprises multiple data-
centers that are physically close to one another. Due to the
low-latency and high-bandwidth network connecting data-
centers in the same region, we can largely consider hardware
within a region to be fungible. However, the cross-region net-
work bandwidth is about 10 times lower than the bandwidth
between datacenters within a region, and the cross-region
network latency is about 100-1000 times longer than the
latency within a region. As a result, our services o�en treat
communication within-region and cross-region di�erently.
�erefore, XFaaS needs to strike a balance between regional
locality and cross-region load balancing.

Figure 5 shows the capacity of XFaaS’s worker pools in a
subset of datacenter regions. Due to the incremental acqui-
sition of capacity and availability of capacity [14], XFaaS’s
capacity is unevenly distributed across regions. �is requires
XFaaS to optimize for regional locality while also balancing
the load across regions to drive hardware to high utilization.

2.4 Terminology

We will de�ne some terminology to set the stage for future
discussions. Each execution of a function is referred to as a
function call or function invocation. A language runtime is
an environment in which functions are executed. Currently,
XFaaS supports runtimes for PHP, Python, Erlang, Haskell,
and a generic container-based runtime for any language.
A worker is a server, i.e., a physical machine that hosts a
speci�c runtime to execute functions.

A namespace is a strongly isolated environment in XFaaS
that consists of a pool of dedicated workers and a set of
functions. A function belongs to a single namespace, and a
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Figure 5. Uneven distribution of XFaaS’s hardware capacity
across datacenter regions.

worker also belongs to a single namespace. Each namespace
supports only one runtime, and currently XFaaS has over
20 namespaces. A namespace is a multi-tenant environment
that can run functions from multiple teams. �e creation of
a new namespace is a rare occasion that only happens when
there is a strong need for security or performance isolation,
or when a new runtime is introduced.

XFaaS allows one instance of a runtime (i.e., one Linux
process) to concurrently execute multiple functions. To min-
imize interference, these functions are restricted to using
only a subset of the language runtime features. For instance,
forking a process is not allowed. �e language runtime pro-
vides data isolation among functions by using a multilevel
security-information �ow approach that incorporates access
control in a Bell-La-Padula style [7].

A function has several a�ributes that developers can set,
such as function name, arguments, runtime, criticality, exe-
cution start time, execution completion deadline, resource
quota, concurrency limit, and retry policy. �e execution
completion deadline can range from seconds to 24 hours.
When XFaaS is low on capacity, functions that can tolerate
delays are postponed until o�-peak hours.

3 Diverse Workloads

XFaaS supports a range of diverse workloads. Its functions
come from thousands of teams, supporting all major prod-
ucts, along with their corresponding diverse runtimes (PHP,
Python, Erlang, Haskell, and C++). Additionally, it accom-
modates nearly every FaaS trigger available in public clouds,
including queues, orchestration work�ows, timers, storage,
data streams, and event bridges. In this section, we summa-
rize the characteristics of XFaaS workloads.

3.1 Workload Categories

We classify functions into three categories based on their
triggers: (1) queue-triggered functions, which are submi�ed
via a queue service; (2) event-triggered functions, which
are activated by data-change events in our data warehouse
and data-stream systems; and (3) timer-triggered functions,
which automatically �re based on a pre-set timing.

Over one month, XFaaS executed 18,377 unique func-
tions. �e function count, invocation count, and compute
usage of these functions are summarized in Table 1. In terms
of the function count, queue-triggered functions dominate
due to their longest history of usage. However, once XFaaS
started to support event-triggered functions, numerous data-
processing services began utilizing them, leading to rapid
growth. �ese functions tend to run frequently but have
shorter execution times. Consequently, event-triggered func-
tions account for 85% of invocations but only 14% of compute
usage. �e support for timer-triggered functions is the latest
addition to XFaaS, and is still gaining momentum.
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Triggers Functions Function Calls Compute Usage

�eue-triggered 89% 15% 86%

Event-triggered 8% 85% 14%

Timer-triggered 3% <1% <1%

Table 1. Breakdown of functions by categories.

3.2 Workload Examples

In general, XFaaS workloads seldom handle user-facing inter-
active requests that demand sub-second response times, such
as newsfeed display, search result ranking, or video playback.
Traditionally, at Meta, these interactive user requests are han-
dled by long-running services, as serverless functions do not
o�er signi�cant advantages in these scenarios.

Serverless functions are typically lauded for two primary
bene�ts: (1) pay-as-you-go and no upfront capacity plan-
ning, and (2) streamlined deployment where developers only
write code, and the serverless platform handles deployment
automatically. However, for user-facing requests requiring
sub-second response times, the �rst bene�t loses relevance
because meticulous capacity planning is needed to provide
guaranteed capacity and ensure delightful experiences for
the billions of users of Meta products. �is is very di�erent
from the scenario of a small product with a limited user base,
where occasional user experience degradation is acceptable,
and cloud providers are expected to have spare capacity to
accommodate load spikes of small products.
Moreover, at Meta, the second bene�t can be achieved

through full deployment automation without employing
serverless functions. Notably, our continuous deployment
tool, Conveyor [18], already deploys 97% of all services with-
out any human intervention, and even serverless functions
are deployed through Conveyor. Due to these reasons, at
Meta, serverless functions are rarely used to handle user-
facing requests requiring sub-second response times.

Next, we describe several examples of typical XFaaS work-
loads. To report resource usage, we use million instructions
per second (MIPS) as the metric for CPU. For memory usage,
we measure the peak memory consumption of each function
invocation within one-minute intervals. �e characteristics
of these workloads are summarized in Table 2.

Workload Trigger Calls/s
% of call

count

CPU

(MIPS)

Memory

(MB)

Execution

Time (s)

Recommendation �eue 35K 0.03% 3K - 4K 220 - 260 10 - 20

Falco Data Stream 25M 22.4% 1 - 4 20 - 90 0.004 - 0.1

Productivity Bot �eue 6K 0.005% 40 - 120 5 - 10 0.15 - 0.25

Noti�cations
Data

Warehouse
3.4M 3% 65 - 200 10 - 90 0.55 - 1.1

Morphing
Framework

�eue 25K 0.02% 1.5M - 27M 30 - 230 65 - 155

Table 2. Examples of XFaaS workloads. As each workload
utilizes multiple functions, the last three columns report
both the minimum and the maximum of CPU usage, memory
usage, and execution time of these functions.

Recommendation System invokes functions to generate
recommendations on certain user events. For example, ac-
cepting a friend request might trigger the execution of a
function to generate a new set of friend recommendations.
Although this functionality supports a user-facing feature,
it does not require real-time response and will not block
accepting a friend request as friend recommendation runs
asynchronously.

Falco is a logging platform for all types of events, includ-
ing those from frontend, backend, and mobile clients. When
the logging server receives a request to log an event (e.g.,
when an A/B test parameter is consumed by an app on a
mobile device), it writes the event to a data stream, which
triggers the execution of a function to process the logged
event. Although log processing is not on the critical path
of handling user interactions, its latency still ma�ers be-
cause the logged events may trigger downstream processing
that subsequently a�ects user experiences. For instance, the
logged data may be used promptly for online ML training
to provide users with be�er recommendations immediately.
�erefore, Falco functions are subject to the SLO of execu-
tion within 15 seconds on average and within one minute at
the 99th percentile.

Productivity Bot is a platform for automating various tasks
based on rules. For example, one can create a rule to send a
message when a code change is deployed into production.
Internally, the productivity bot leverages XFaaS functions
that are triggered by events like code deployment to execute
various automations.

Noti�cation System schedules noti�cation campaigns via
communication channels such as SMS, email, and push noti�-
cations. Following a per-product con�guration, a scheduling
system selects target users from data warehouse at preset
times and activates XFaaS functions to send noti�cations.

Morphing Framework is a platform that programmatically
generates ephemeral functions for executing custom data
transformation across data stores (e.g. MySQL, key-value
stores). �ese functions run for minutes and consume orders
of magnitude more CPU cycles than ordinary functions.

3.3 Workload Resource Usage

Across all functions supported by XFaaS, their resource con-
sumption varies widely, as shown in Table 3. CPU usage per
function call varies from 0.37 MIPS at P10 to 1,064,280 MIPS
at P99. Overall, 31% of functions have per-invocation CPU
usage below 1 MIPS, 65% below 10 MIPS, and 89% below
100 MIPS. In terms of per-invocation memory usage, 60% of
functions use below 16 MB, 92% use below 256 MB, while 2%
exceed 1 GB. Lastly, the execution time varies from millisec-
onds to over 10 minutes. Speci�cally, 33% of function calls
�nish within 1 second, 94% �nish within 60 seconds, while
1% exceed 5 minutes.
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Function

Type

CPU Usage (MIPS) Memory Usage (MB) Execution Time (ms)

P10 P50 P90 P95 P99 P10 P50 P90 P95 P99 P10 P50 P90 P95 P99

�eue-triggered 20.40 221.80 7,611 31,421 1,064,280 0.08 2.16 63.8 194.6 5,952 219.20 2,652 23,060 76,711 266,446
Event-triggered 0.54 11.36 189 441 2,981 0.02 1.20 26.0 44.7 220 3.96 97.20 1,270 2,817 11,232
Timer-triggered 0.37 576.00 44,839 144,020 369,282 0.00 0.17 66.9 134.5 388 23.74 3,625 96,352 150,998 659,162

Table 3. Percentiles of CPU usage, memory usage, and execution time of all functions. P10 means the 10th percentile.

�eue-triggered functions have a longer tail with high
CPU usage, as some of them (e.g., Morphing Framework
functions) are long-running and execute complex data trans-
formations. Timer-triggered functions exhibit high variation,
with an execution time of 24 ms at P10 and almost 11 min-
utes at P99. Lastly, event-triggered functions execute at a
high frequency but with low CPU usage. �ese functions
are triggered by data changes in our data warehouse and
data-stream system. �e Noti�cation System and the Falco
logging system fall under this category.

In summary, serverless functions demonstrate signi�cant
variability in their resource consumption. �is necessitates
XFaaS to employ intelligent scheduling and load balancing
techniques to optimize hardware utilization.

4 XFaaS Design

We follow the architecture diagram in Figure 6 to present
the design of XFaaS. First, we provide an overview of how a
function call is processed end-to-end, and then we elaborate
on the details of each component.

4.1 Overview

To initiate a function call, a client sends a request to a sub-
mi�er. �e submi�er enforces rate limiting and forwards
the request to a �eueLB (queue load balancer), which then
selects aDurableQ (durable queue) to persist the function call
until it completes. �e scheduler periodically pulls function
calls from the DurableQs and stores them in its in-memory
FuncBu�er (function bu�er), with a separate bu�er desig-
nated for each function. �e scheduler determines the exe-
cution order of function calls based on their criticality, com-
pletion deadline, and quota, and transfers function calls that
are ready for execution to the RunQ (run queue). Finally, the
function calls in the RunQ are dispatched to theWorkerLB

(worker load balancer), which routes them to the appropriate
workers for execution.

In Figure 6, DurableQ is the only sharded and stateful
component, unlike the other components which are stateless
and unsharded. DurableQ uses a sharded database that is
highly available to store function calls permanently. �e sub-
mi�er, �eueLB, scheduler, and WorkerLB are all stateless,
unsharded, and replicated without a designated leader, so
their replicas play equal roles. �is architecture concentrates
state management in a single component, simplifying the
overall design. Scaling a stateless component can be easily
achieved by adding more replicas, and if a stateless compo-
nent fails, any peer can take over its work.

With XFaaS’s hyperscale, each component in Figure 6
typically runs on hundreds or more servers, except for the
workers and DurableQs. �ese components serve as the com-
pute and storage engines for function calls, and their capacity
needs are proportional to the volume of function calls. Cur-
rently, the workers and DurableQs consume over 100,000
and 10,000 servers, respectively.
XFaaS operates across multiple geo-distributed datacen-

ter regions, with the capability to dispatch function calls to
any region. However, it aims to strike a balance between
load balancing and regional locality, by executing most func-
tion calls in the same region where they are submi�ed. As
shown in Figure 5, XFaaS’s hardware capacity varies sig-
ni�cantly across regions, and hence load balancing is criti-
cal. To achieve this, three components work together. First,
�eueLBs balances the load across DurableQs in di�erent
regions. Second, schedulers distribute function calls pro-
portionally to each region’s worker pool capacity. Finally,
WorkerLB balances the load of individual workers while also
ensuring that each worker handles a stable and subset of
functions for improved locality, rather than all functions.

To ensure fault tolerance, the central controllers at the top
of Figure 6 remain separate from the critical path of function
execution. �e controllers continuously optimize the sys-
tem by periodically updating key con�guration parameters,
which are consumed by critical-path components like work-
ers and schedulers. Since these con�gurations are cached
by the critical-path components, they continue to execute
functions using the current con�gurations even if the central
controllers fail. However, when the central controllers are
down, XFaaS would not be recon�gured in response to work-
load changes. For example, the tra�c matrix for cross-region
function dispatching won’t be updated even if the actual
tra�c has shi�ed. Typically, this does not lead to signi�cant
imbalance immediately and can withstand central controller
downtime for tens of minutes.

For simplicity, Figure 6 shows only one work pool per re-
gion for one namespace. In reality, a region may host multiple
namespaces and each component depicted in Figure 6 can
support multiple namespaces simultaneously, except that
each namespace has its own dedicated worker pools. Below,
we describe each XFaaS component in detail.

4.2 Submitter

A function can be executed in response to various events.
�e �rst type of event involves clients submi�ing function
calls to submi�ers, as illustrated in Figure 6. �e second type
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Figure 6. High-level architecture of XFaaS.

of event involves data changes in our data warehouse [42],
while the third type of event is triggered by the arrival of
new data in our data-stream system [12]. For simplicity, the
last two types of events are not shown in Figure 6.
Initially, XFaaS allowed clients to directly write into

DurableQs the IDs and arguments of the functions to be
called. As the rate of function calls increased, we introduced
the submi�er to improve e�ciency by batching calls and
writing them to a DurableQ as one operation. If a function’s
arguments are too large, the submi�er stores the arguments
separately in a distributed key-value store. Moreover, the
submi�er enforces policies like rate limiting to avoid over-
loading the submi�er and the downstream components. To
achieve this, each submi�er independently consults the Cen-
tral Rate Limiter shown in Figure 6 to keep track of the global
resource usage.

Finally, because some clients have very spiky submission
rates of function calls, as shown in Figures 2 and 4, each
region has two sets of submi�ers, one for normal clients and
another for very spiky clients (such as the one in Figure 4) to
prevent spiky clients from overly impacting normal clients.
XFaaS monitors extremely spiky clients and alerts its opera-
tors to negotiate with the customer about moving them to
the spiky submi�ers; otherwise, XFaaS will thro�le them by
default. Note that this needs human involvement because it
is an explicit SLO change for the customer.

4.3 DurableQ and �eueLB

Upon receiving a function call, the submi�er forwards it to a
�eueLB. �e Con�guration Management System depicted
at the top of Figure 6 is called Con�gerator [40]. It stores and
delivers a routing policy to each�eueLB, which speci�es
the distribution of the submi�er-to-�eueLB tra�c for each
¡source-region, destination-region¿ pair. �is helps balance
the load across DurableQs in di�erent regions as the hard-
ware capacity of DurableQs also varies wildly across regions,
similar to that in Figure 5. �e mapping of function calls to
DurableQs is sharded by a random UUID to distribute the
load evenly across DurableQs. �is means that a function
call can be queued at any DurableQ.

Each DurableQ maintains a separate queue for each func-
tion, ordered by the function call’s execution start time, which
is speci�ed by the caller and can be a future time, such as
eight hours from now. �e scheduler periodically queries
DurableQs to retrieve function calls whose start time is past
the present time. Once a DurableQ o�ers a function call to a
scheduler, it will not o�er it to another scheduler unless the
scheduler fails to execute it. A�er a function call is executed
by a worker, the scheduler noti�es the DurableQ with either
an ACK message to indicate that the function was executed
successfully or a NACK message to indicate otherwise. Upon
receiving an ACK, the DurableQ permanently removes the
function call from its queue. If it receives a NACK or neither
an ACK nor a NACK a�er a timeout, it makes the function
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call available for another scheduler to retrieve and retry. �is
means that a DurableQ o�ers the at-least-once semantics.

4.4 Scheduler

A scheduler’s main responsibility is to determine the order
of function calls based on their criticality, execution deadline,
and capacity quota. As depicted in Figure 6, the inputs to the
scheduler are multiple FuncBu�ers (function bu�ers), one for
each function, and the output is a single ordered RunQ (run
queue) of function calls that will be dispatched for execution.
FuncBu�ers and RunQ are in-memory data structures.
Each scheduler periodically polls di�erent DurableQs to

retrieve pending function calls. Since the mapping of func-
tion calls to DurableQs is sharded by a random UUID, the
scheduler may retrieve di�erent callers’ invocations for the
same function from di�erent DurableQs. �ose invocations
are merged into the single FuncBu�er for the function, which
is ordered �rst by the criticality level of function calls and
then by their execution deadline. As XFaaS o�en runs un-
der constrained capacity, prioritizing criticality �rst ensures
that important function calls are more likely to be executed
during a capacity crunch or a site outage.

�e scheduler selects themost suitable function call among
the top items of all FuncBu�ers and moves it to the RunQ for
execution. �e selection criteria involve quota management
and will be described in detail in §4.6. �e RunQ also serves
the purpose of �ow control. If the RunQ builds up due to
slow function execution, the scheduler will slow down both
the movement of items from FuncBu�ers to the RunQ and
the retrieval of function calls from DurableQs.

Whenworkers in a region are underutilized, to balance the
load, the region’s schedulers may retrieve function calls from
DurableQs in other regions whose workers are overloaded.
�e Global Tra�c Conductor (GTC) in Figure 6 maintains
a near-real-time global view of the demand (pending func-
tion calls) and supply (capacity of worker pools) across all
regions. It periodically computes a tra�c matrix where its
element Đğ Ġ speci�es the fraction of function calls that the
schedulers in region ğ should pull from region Ġ . To compute
the tra�c matrix, the GTC starts by se�ing ∀ğ,Đğğ = 1 and
∀ğ ≠ Ġ,Đğ Ġ = 0, meaning that all schedulers will only pull
from DurableQs in their local region. However, this might
lead to the workers in certain regions becoming overloaded.
�e GTC calculates the shi� of tra�c in those overloaded
regions to their nearby regions until no region is overloaded
or all regions are equally loaded. �e GTC periodically dis-
tributes a new tra�c matrix to all schedulers in all regions
via the Con�guration Management System in Figure 6. �e
schedulers then follow the tra�c matrix to retrieve function
calls from DurableQs in di�erent regions.

4.5 Workers and WorkerLB

Each namespace supports a single runtime, and has its dedi-
cated worker pool. Functions that use the same programming

language but require strong isolation are separated into dif-
ferent namespaces. For the sake of brevity, the discussion
below assumes a single namespace, meaning a single runtime
and a single worker pool.

To maximize hardware e�ciency, we want to closely ap-
proximate the e�ect of a universal worker, where everyworker
can instantly execute every function without any startup
overhead. XFaaS achieves this through multiple techniques.
First, it allows multiple functions to execute concurrently in
one instance of the runtime, i.e., one Linux process. Second,
it uses an e�cient peer-to-peer system [15] to proactively
push the latest code of all functions in a namespace to the lo-
cal SSD disk of every worker in that namespace. �e workers
keep the runtime up and running all the time. Upon receiving
a call for a function for the �rst time, the runtime loads the
pre-populated function code from its local SSD and executes
it immediately. One instance of the runtime can concurrently
execute di�erent functions in di�erent threads. �ird, XFaaS
uses cooperative JIT compilation among workers to eliminate
the overhead and delay of every worker redoing pro�ling
for JIT compilation (§4.5.1). Finally, to improve the cache hit
rate of the function code and JIT code in a worker’s memory,
XFaaS uses locality groups to ensure that only calls for a sta-
ble and small subset of functions, rather than all functions,
are dispatched to a given worker (§4.5.2).

4.5.1 Cooperative JIT Compilation. We use PHP as the
primary example in our discussion. Our PHP runtime is
called HHVM [23], which uses instrumentation-based pro�l-
ing to enable region-based JIT compilation [36]. However,
it is ine�cient to have tens of thousands of workers each
independently performing pro�ling, as previous work [37]
shows that HHVM needs up to 25 minutes to �nish pro�ling
and produce high-quality JIT code for a code size of around
500MB. �is is problematic for XFaaS because it frequently
pushes new code for functions to all workers.

To solve this problem, XFaaS adopts cooperative JIT com-
pilation among workers. Every three hours, XFaaS bundles
all new and changed function code into a �le and pushes it
to all workers through peer-to-peer data distribution [15].
Workers start using the new function code in three phases.
In the �rst phase, a small set of workers run the new code to
catch potential bugs. In the second phase, 2% of the workers
run the new code to catch harder-to-detect bugs, and some
seeder workers perform pro�ling to collect the data needed
for JIT compilation. In the third phase, a seeder’s pro�ling
data is distributed to all workers in the same locality group

as the seeder, allowing them to perform JIT compilation for
hot functions immediately, even before they receive func-
tion calls for the new code. Later, when they receive those
calls, they can immediately execute the optimized JIT code
without any startup or pro�ling delay.
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4.5.2 Locality Groups. Our goal is to closely approximate
the e�ect of an universal worker, where every worker can in-
stantly execute every function without any startup overhead.
However, due to the limited memory capacity, it is infeasible
to keep every function’s JIT code in every worker’s memory.
Moreover, functions themselves need memory to cache data
and perform computations. If a worker happens to execute
multiple memory-hungry functions concurrently, it may run
out of memory. For example, functions of the Morphing
Framework described in Section 3.2 are long–running and
consume increasingly more memory until they �nish.
To address this problem, the Locality Optimizer depicted

in Figure 6 partitions both functions and workers into local-
ity groups to ensure that only calls for a subset of functions
are dispatched to a given worker. Based on the pro�ling
data of functions, the Locality Optimizer partitions func-
tions into non-overlapping locality groups and ensures that
memory-hungry functions are spread out into di�erent local-
ity groups. Speci�cally for the Morphing Framework, since it
programmatically generates many ephemeral functions and
those functions share similar characteristics, the Locality
Optimizer simply assign them to di�erent locality groups in
a round-robin fashion.

In addition to mapping functions to locality groups, each
locality group of functions is mapped to a corresponding
locality group of workers, such as Locality Groups 1 and 2 in
Figure 6. When aWorkerLB in Figure 6 routes a function call,
it randomly chooses two workers from the function’s corre-
sponding worker locality group, and dispatches the function
call to the worker with less load. �is approach introduces
locality into the traditional load-balancing approach of the
power of two random choices [32].

As the resource-consumption pro�les of functions change,
the Locality Optimizer can dynamically reassign functions
across locality groups. Moreover, if the mix of function calls
changes, such as one locality group experiencing a surge in
its function calls, the Locality Optimizer can move workers
from one locality group to another to balance the load.

4.6 Handling Load Spikes

XFaaS uses a set of techniques to smooth out load spikes,
which allows it to operate e�cientlywithout over-provisioning
resources to accommodate the peak load.

4.6.1 �ota for Functions. Every function is associated
with a quota set up by its owner, which de�nes the total
number of CPU cycles it can use per second globally. �is
quota is transformed into a requests-per-second (RPS) rate
limit by dividing the quota by the function’s average cost per
invocation.�e RPS for a function is aggregated globally, and
each scheduler consults theCentral Rate Limiter in Figure 6 to
determine whether to thro�le the invocations to a function,
based on whether the function globally exceeds its RPS limit.

4.6.2 Time-Shi�ing Computing. XFaaS provides two
types of quotas: reserved and opportunistic. If a function uti-
lizes reserved quota and is currently within its allo�ed limit,
XFaaS strives to initiate the execution of its function call on
a worker within seconds of receiving the call. �is is part of
XFaaS’s SLO. If a function uses opportunistic quota, XFaaS’s
execution SLO for that function is set to 24 hours. �is en-
ables XFaaS to schedule execution of these delay-tolerant
functions during o�-peak hours when capacity is available.
When workers are underutilized or overloaded, XFaaS

dynamically adjusts the rate of invocations for functions
using opportunistic quota to run at a rate above or below
the RPS limit derived from their quota. Let Ĩ0 denote an
opportunistic function’s preset RPS limit. Its real RPS limit
is dynamically adjusted to Ĩ = Ĩ0 × ď , where ď re�ects the
current utilization of workers. If workers are underutilized,
ď increases. Conversely, if workers are overloaded, ď can
decrease all the way down to zero, causing the scheduling
of opportunistic functions to stop. �e Utilization Controller

in Figure 6 monitors the utilization of workers, dynamically
adjusts ď to reach a target utilization level of workers, and
stores ď in a database. �e schedulers periodically retrieves
ď from the database, and uses it to compute the adjusted RPS
limit for opportunistic functions. Meta’s hardware budget
allocation process incentivizes teams to utilize opportunistic
quota whenever possible, similar to public cloud’s pricing
incentives for using harvest VMs.

4.6.3 Protecting Downstream Services. Even if XFaaS
can perfectly manage its own load, its functions can still
cause resource contention at the downstream services that
they invoke. �e following production outage initially moti-
vated us to develop solutions to address this issue. At one
time, the social-graph database called TAO [9] experienced
high load during its peak hours, which is expected. However,
additional load from a high-volume function running on
XFaaS unexpectedly exacerbated the situation, overloading
TAO and causing excessive failures and retries.�ese failures
and retries ampli�ed queries to several downstream services,
resulting in degraded availability of TAO and further over-
loading an indexing service, subsequently causing a domino
e�ect. �e investigation to identify the root cause of this
domino e�ect and the subsequent manual mitigation took
place over the course of a full day, eventually leading to a
large portion of function executions on XFaaS being paused
manually to temporarily mitigate the situation.

To avoid overloading downstream services, XFaaS takes a
TCP-like additive-increase-multiplicative-decrease (AIMD)
approach to dynamically adjust the RPS limit for functions.
A downstream service can throw a back-pressure exception
to indicate that it is overloaded. When the back-pressure for
a function exceeds a threshold, its RPS limit Ĩ is adjusted to
a fractionĉ of its current RPS limit, Ĩġ+1 = Ĩġ ×ĉ . When it
is free of back pressure, the RPS limit is increased additively,
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Ĩġ+1 = Ĩġ + ą . Bothĉ and ą are tunable parameters. �e back-
pressure threshold is de�ned per downstream service and is
set by the service owner based on their domain knowledge.
For example, for two of our largest downstream services, the
threshold was set at 5,000 exceptions per minute, which has
worked robustly without any changes for the past two years.

XFaaS also provides other tra�c shaping features to assist
downstream services. Let Ĩ denote a function’s RPS limit and
Ħ denote a function’s execution time. �e function may have
up to Ď = Ĩ × Ħ running instances at any given time. If Ħ
is large, Ď can also be large, which may result in too many
concurrent calls to a downstream service, possibly causing
it to become overloaded. XFaaS allows each function to be
con�gured with a concurrency limit to indicate the maximum
number of instances that the function can run at any given
time. �e concurrency limit is less powerful than the AIMD
approach described above, but serves as a proper safety net,
since not every downstream service is well-implemented to
throw back-pressure exceptions in overload situations.
While some downstream services may be able to handle

high RPS in a steady state, abrupt changes such as a sudden
increase of RPS from Ĩ

10 to Ĩ
2 may not be well-handled by

such services.�ese services may need time to warm up their
cache or use autoscaling to add more instances in response
to a load increase. To assist these services, XFaaS uses slow
start to gradually increase a function’s RPS while imposing a
limit on the rate of change to RPS. Speci�cally, if the number
of function calls per time window ē is already above a
threshold ofĐ , tra�c will increase by a maximum factor of Ă
per time window. �rough empirical evaluation, we have set
these parameters asē = 1 minute, Đ = 100 function calls,
and Ă = 20%. Slow start slowly but steadily increases RPS
until either the RPS limit or concurrency limit is reached or
the function’s �nish rate is unable to keep up with the rate
of scheduled function calls.

4.7 Data Isolation

Functions that require strong isolation for security or per-
formance are assigned to di�erent namespaces, each using
distinct worker pools to achieve physical isolation. Within
the same namespace, multiple functions can run in the same
Linux process, owing to the high degree of trust within a
private cloud, the mandatory peer review of all code changes,
and the default security mechanisms that are already in place.
In addition, we enforce data isolation across functions to pre-
vent unintended data misuse. �is is accomplished using a
multilevel security-information �ow approach that incorpo-
rates access control in a Bell-La-Padula style [7].

XFaaS o�ers a programming model where function own-
ers can annotate the arguments of their function with se-
mantics. A system automatically infers data type semantics
and o�er warnings on missing or potentially inaccurate an-
notations. To ensure data isolation across functions, XFaaS
enforces the Bell-La-Padula security principles. Principals

at higher classi�cation levels do not write to lower classi-
�cation levels, and principals at lower classi�cation levels
do not read from higher classi�cation levels. In other words,
data can only �ow from lower to higher classi�cation levels.

XFaaS enforces the policy at the boundaries between sys-
tems which are separated into isolation zones with di�erent
classi�cation levels. Each function call is labelled with an
isolation zone, and the labeling can be done either statically
at the function coding time, or dynamically through prop-
agation during RPC calls. �e XFaaS scheduler checks if a
function’s arguments from a source isolation zone can �ow
to the function’s execution isolation zone, respecting the
Bell-La Padula properties. Similarly, workers also ensure
that a function running in a zone follows these properties.
Overall, XFaaS’s novel use of a combination of isolation

models enables it to operate securely and e�ciently. On one
hand, it uses separate worker pools to execute functions
that require strong isolation. On the other hand, functions
within the same namespace rely on the language runtime to
maintain data isolation at function granularity. �is allows
XFaaS to run multiple functions concurrently within a single
Linux process, maximizing e�ciency.

5 Evaluation and Experience

We use production data to evaluate XFaaS. Our evaluation-
focuses on the following questions.

• Can XFaaS drive workers to high utilization? (§5.1)

• Can XFaaS closely approximate the e�ect of a universal
worker so that every worker can execute every function
instantly without any startup overhead? (§5.2)

• Can XFaaS e�ectively defer delay-tolerant functions to
o�-peak hours for execution? (§5.3)

• Can cooperative JIT compilation help workers achieve
their maximum performance quickly? (§5.4)

• Can XFaaS automatically prevent functions from overload-
ing downstream services? (§5.5)

5.1 CPU Utilization of Workers

Due to the hyperscale of XFaaS, reducing hardware costs is a
top priority for us. �e primary hardware cost is the worker
pool, and improving its utilization e�ectively reduces hard-
ware waste. Figure 7 shows the average utilization of workers
in 12 di�erent regions. We make several observations. First,
despite the very spiky load in received function calls as de-
picted in Figures 2 and 4, XFaaS is e�ective in spreading
out the actual execution of function calls evenly. �e peak-
to-trough ratio of CPU utilization is only 1.4x, which is a
signi�cant improvement over the peak-to-trough ratio of
4.3x depicted in Figure 2 for the “Received” curve. Second,
overall, XFaaS achieves a high daily average CPU utilization
of 66%, showing that it is e�ective in eliminating unneces-
sary wait time in a function’s lifecycle as shown in Figure 1.
Based on our anecdotal knowledge in the industry, this level
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Figure 8. Wall-clock time of function execution.

of CPU utilization might be several times higher than that of
typical FaaS platforms. �ird, the CPU utilization levels of
di�erent regions stay within a narrow band, indicating that
XFaaS is e�ective in balancing load across regions despite
the uneven distribution of hardware capacity in di�erent
regions, as depicted in Figure 5.
Figure 8 shows that the majority of functions are light-

weight and execute within less than one second. �erefore,
it would be very wasteful to incur the overhead depicted
in Figure 1 for each function call. Although the execution
time of most functions is short, some functions can have a
very long execution time, as the P95 execution time hovers
around 80 seconds. Despite the complexity introduced by
the high variance of execution time, XFaaS is e�ective in
managing the load and achieving a high CPU utilization.

5.2 Locality Group and Memory Consumption

To maximize hardware e�ciency, our goal is to closely ap-
proximate the e�ect of a universal worker, where every
worker can instantly execute every function without any
startup overhead. However, due to limited memory capacity,
it is infeasible to keep the JIT code for every function in ev-
ery worker’s memory. To address this problem, as described
in §4.5.2, XFaaS partitions both functions and workers into
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locality groups to ensure that only calls for a subset of func-
tions are dispatched to a given worker.
To evaluate the impact of locality groups, we conducted

an experiment in production, by dividing all workers in a
speci�c region into two partitions, with and without locality
groups, respectively. Production tra�c in the region was
randomly distributed to the two partitions to ensure a fair
comparison. Over a two-week-long period, workers in the
partition with locality group on average consumed 11.8%
and 11.4% less memory at Č50 and Č95, respectively. �is
experiment demonstrates that locality groups are e�ective
in reducing workers’ memory consumption.

Moreover, Figure 9 shows that, although there are tens of
thousands of functions, each worker executes only about 61
and 113 distinct functions within a one-hour window at P50
and P95, respectively. Furthermore, Figure 10 demonstrates
that a worker’s memory consumption stays at a stable level
while being highly utilized.

�ese results demonstrate that locality groups are able to
e�ectively manage memory pressure and approximate the
e�ect of a universal worker. Moreover, for power e�ciency,
all our workers are con�gured with only 64GB of memory.
�is demonstrates that a universal worker can be realistically
approximated with a moderate amount of memory.

5.3 Time-Shi�ing Computing

As described in §4.6.2, XFaaS provides two types of quo-
tas: reserved and opportunistic. Function using opportunistic
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reserved and opportunistic quotas, respectively.

quota can be deferred to o�-peak hours for execution. Fig-
ure 11 compares the total CPU instructions consumed by
functions using reserved quota versus those using oppor-
tunistic quota.Wemake several observations. First, functions
using reserved quota demonstrate a diurnal pa�ern as most
functions are triggered by events that are ultimately related
to our user-facing products. Second, the CPU consumption
of the reserved functions and opportunistic functions almost
exactly complement each other, demonstrating that XFaaS
is e�ective in scheduling opportunistic functions to run dur-
ing o�-peak hours. We are working aggressively to convert
many functions that currently use reserved quota to use op-
portunistic quota. �is is feasible because most functions do
not actually have a tight deadline. Using opportunistic quota
would allow XFaaS to further reduce its peak capacity needs,
as well as run these functions with low-cost elastic capacity,
which is similar to AWS’ Spot Instances.

One may notice that the peak of the “Received” curve in
Figure 2 is much higher than the opportunistic-quota curve
in Figure 11.�is is because multiple factors work together to
smooth out the peak load: 1) the caller of a function can spec-
ify a future execution start time for the function; 2) XFaaS
thro�les functions that exceed their quota; 3) XFaaS can de-
lay the execution of lower-criticality functions as needed;
and 4) opportunistic functions are deferred to o�-peak hours.
Out of these factors, the opportunistic-quota curve in Fig-
ure 11 only re�ects the last one. Although we expect that
opportunistic quota will make up a larger percentage of the
overall contribution to managing load spikes as we transfer
more functions from reserved quota to opportunistic quota,
the di�erence between Figures 2 and 11 emphasizes the im-
portance of using a holistic set of techniques to manage load
spikes, not just opportunistic quota alone.

5.4 Cooperative JIT Compilation

As explained in §4.5.1, our PHP runtime uses cooperative
JIT compilation to address the ine�ciency of workers taking
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Figure 12. Restarting a worker’s runtime with and with-
out cooperative JIT compilation. Without cooperative JIT
compilation, it takes 21 minutes (between time 900 and 2160
seconds) for the worker to reach its maximum performance.

tens of minutes to reach their maximum performance a�er
a code update for functions. To compare the performance
di�erence with and without cooperative JIT compilation, we
perform an experiment on a worker running in production.
We use Đć to denote the time at ć seconds into the experi-
ment. In Figure 12, at T0, we stop the worker’s runtime to
update the function code and restarts it with the JIT pro�ling
data supplied by a seeder. With the assistance of the JIT data,
the worker reaches its maximum RPS by T180, and the entire
process takes three minutes. At T900, we restart the runtime
without providing it with the JIT pro�ling data. As a result,
the runtime had to perform its own instrumentation-based
pro�ling, and it takes until T2160 for the worker to reach its
maximum RPS. �e entire process takes 21 minutes, which is
much longer than the three minutes required to reach maxi-
mum RPS with cooperative JIT compilation. �is experiment
highlights the importance of cooperative JIT compilation,
especially given XFaaS’s practice of frequently pushing code
updates for functions to all workers.

5.5 Protecting Downstream Services

We demonstrate XFaaS’s e�ectiveness in preventing func-
tions from overloading downstream services through two
real-world incidents that happened in production.
In the �rst incident, a write-through cache (WTCache)

situated in front of the social-graph database, called TAO [9],
exhibited a signi�cant degradation in read and write avail-
ability, dropping 10% and 20% from their respective SLOs.
�is was due to a bug in the new code release of WTCache
that caused high tra�c to be sent to WTCache’s backing per-
sistent key-value store (KVStore) during cache misses. As a
result, KVStore thro�ledWTCache’s requests, andWTCache,
in turn, further dropped reads and writes to WTCache.

Under normal circumstances, XFaaS would continuously
execute a high volume of calls to Function A and Function B in
Figure 13, which would further call WTCache. However, dur-
ing the incident, XFaaS’s back-pressure mechanism slowed
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Figure 13. When a downstream service was overloaded,
XFaaS �rst slowed down function executions and then grad-
ually increased them a�er the downstream service recovered.

�e top �gure shows the downstream service’s read SLO,

and the bo�om �gures show how XFaaS paced the execution

of two functions a�ecting the downstream service. �e red

vertical lines indicate the beginning and end of the incident.

down the execution of those functions to avoid further over-

loading WTCache when it was already unhealthy. XFaaS’s

DurableQs stored a backlog of pending calls to those func-

tions without dropping those calls. As soon as WTCache re-

covered, XFaaS slowly increased the execution rates of those

functions, and the backlog was processed within two hours.

�is incident demonstrates that XFaaS’s back-pressure mech-

anism is e�ective in slowing down the execution of functions

when the downstream service is overloaded.

�e second incident is di�erent from the �rst incident de-

scribed above, but it also involved TAO. During themigration

of TAO, its capacity was undersized in one of our datacenter

regions, which led to TAO becoming overloaded a�er the

migration. During this incident, XFaaS automatically slowed

down the execution of as many as 200 unique functions, re-

ducing the total tra�c to TAO in the impacted region by

about 40%. �is successfully limited user impact as a poten-

tially more severe region overload would had to be followed

by a region drain and redirection of the tra�c to remote re-

gions, signi�cantly increasing latencies or in the worst-case

leading to unavailability. Overall, this incident, as depicted

in Figure 14, demonstrates that XFaaS’s back-pressure mech-

anism can automatically identify and slow down a massive

number of unique functions that a�ect a downstream service

without manual intervention. �is would be hard to achieve

without a fully automated mechanism.

6 XFaaS and Public Cloud

While certain techniques used in our private cloud may not

translate directly to public clouds, this section discusses the

broader lessons that might be applicable to public clouds.

In public cloud FaaS platforms, function executions are

typically con�ned to a datacenter region. However, XFaaS
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Figure 14. Number of unique functions (not invocations of

the same function) whose execution was slowed down by

XFaaS when a downstream service was overloaded.

takes a di�erent approach, prioritizing local region execution

but having the �exibility to dispatch function calls globally

across regions when necessary for load balancing. While

this strategy involves added complexity for global coordina-

tion, our successful implementation in XFaaS demonstrates

its practicality. �is approach holds potential relevance for

public clouds, particularly as major cloud providers expand

to encompass 50 or more regions, o�ering abundant oppor-

tunities for improved load balancing across regions.

Another main insight is that optimizing for resource uti-

lization and the throughput of function calls should be an

important focus of a FaaS platform, rather than solely �x-

ating on the latency of function calls. We believe that this

principle holds relevance for public clouds as well, although

many existing studies tend to focus exclusively on reducing

function cold start times, o�en overlooking considerations

related to hardware utilization and throughput.

To reduce latency, a common approach is to keep a VM

idle for 10 minutes or longer a�er a function invocation to

allow for potential reuse [45]. In contrast, if a FaaS platform

is optimized for hardware utilization and throughput, this

waiting time should be reduced by a factor of 10 or more, be-

cause starting a VM consumes signi�cantly fewer resources

than having a VM idle for 10 minutes.

At Meta, function calls exhibit high levels of spikiness, and

the peak-to-trough ratio for function calls is 4.3. Similarly, in

the industry, Shahrad et al. reported that Azure Functions’

workloads have a peak-to-trough ratio of two [39], andWang

et al. reported that Alibaba Cloud Function Compute expe-

riences a peak-to-trough load ratio of more than 500x for

certain functions [43]. If a FaaS platform primarily priori-

tizes latency, it would have to signi�cantly over-provision

hardware resources to meet the peak demand, leading to

overall low hardware utilization.

Furthermore, Shahrad et al. reported that 64.1% of calls

to Azure Functions are triggered by queues, events, storage,

timers, and orchestration work�ows [39]. While certain por-

tions of these function calls are indirectly user-triggered [19]
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and may have response expectations of a few seconds, the

remaining calls possess the potential for delay-tolerant exe-

cution. �is is because, in general, function calls triggered

by non-RPC events like storage changes are less likely to in-

volve an interactive user waiting for an immediate response,

unlike functions triggered directly by RPCs like HTTP.

Several techniques in XFaaS for smoothing out the load

spike might be applicable to public clouds. First, allowing

the caller to specify a future execution start time would pro-

vide the caller with the �exibility to explicitly control how

to spread out their function execution. Second, allowing a

function’s owner to choose its SLO in terms of the execution

completion deadline would provide the FaaS platform the

�exibility to postpone the execution of delay-tolerant func-

tions to o�-peak hours. �ird, allowing function owners to

assign a criticality level to each function ensures that critical

functions are executed �rst when the capacity is low. All

of these might be provided as additional o�erings to public

cloud users at a discounted price to motivate adoption.

Although a public cloud would not be able to run functions

from di�erent users in the same Linux process like XFaaS

does, we believe that large customers of public clouds like

Net�ix, Snapchat, and Twitch consume a signi�cant amount

of capacity, and those large customers can adopt XFaaS’s ap-

proach in their virtual private cloud on top of public clouds.

Speci�cally, among thousands of teams using XFaaS, a single

team consumes 10% of the total capacity, while 0.4% and 2.6%

of the teams consume 50% and 90% of the total capacity, re-

spectively. Similarly, such large customers are likely to exist

in public clouds as well and may be able to adopt XFaaS’s

approach.

7 Related Work

Surveys and applications. Several studies have provided

surveys of the serverless computing landscape [20, 21, 26, 31],

with some speci�cally focusing on the survey of serverless

applications [13]. Moreover, speci�c types of serverless ap-

plications have also been studied before [25, 30, 48].

Scheduling functions and tackling cold start. Prior work

illustrated several approaches for e�cient scheduling of func-

tions [27, 28, 39, 41]. XFaaS’s deferred execution of delay-

tolerant functions is unique and can result in signi�cant

capacity savings during peak time. Some works tackle the

cloud function start-up latency problem [1, 2, 8, 10, 11, 16, 33–

38, 44, 46, 47] using several architectural optimizations at

the workers such as using microVMs [1] or microkernels.

�ese can help speed up prewarm time when the execution

environment is initialized. AWS Lambda recently introduced

Snapstart [6] which stores and loads snapshots of the exe-

cution environment to further speed up cold start. In con-

trast, XFaaS eliminates cold start altogether in the common

case since execution environments are pre-compiled using a

region-based pro�ling-guided compilation in tandem with

a staged rollout process to pre-provision workers with opti-

mized code for the execution environment and all functions

of that environment.

Industry and open-source systems. Several FaaS industry

systems [4, 5, 17] and open frameworks [3, 22] already exist.

However, none of them consider the interaction between

the FaaS system and downstream services. XFaaS’s back-

pressure mechanism leverages overload signals to reduce

load on downstream services dynamically and automati-

cally. Moreover, XFaaS’s approach to widely push execution

runtimes with pre-compiled optimization code can greatly

reduce startup latencies; its unique deferred computation

model can save capacity at peak periods; and XFaaS leverages

locality groups to reduce workers’ memory consumption.

Hardware cost of FaaS platforms.Wang et al. [45] bench-

marked several public cloud FaaS platforms and found that

all of them keep VMs idle for 10 minutes or longer a�er a

function call, which could result in low hardware utilization.

Several studies have reported the workload characteristics

of public cloud FaaS platforms [39, 43]. However, they did

not provide information on the hardware utilization of these

platforms. As a rare example of research that focuses on the

hardware cost of a FaaS platform, Zhang et al. [49] proposed

using harvested resources to run functions.

8 Conclusion

We have introduced XFaaS, a serverless platform in our pri-

vate cloud. XFaaS employs several techniques to enable work-

ers to serve requests for any function almost instantly with-

out cold start time, including proactive code deployment,

cooperative JIT, cross-function runtime sharing, and locality

groups for reducing memory consumption. XFaaS also lever-

ages the insight that, although function invocations exhibit

high spikes, not all functions require near-real-time latency.

�is insight allows for the postponement of computation for

delay-tolerant functions to o�-peak hours, resulting in sig-

ni�cant capacity savings. Lastly, we advocate that workload

management for an FaaS platform should be contextualized

within a broader ecosystem, speci�cally considering the im-

pact of spiky function executions on downstream services.

A main piece of our ongoing work is to transition most func-

tions using guaranteed quota to utilize opportunistic quota

for additional capacity savings.
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