
Kubernetes and PyTorch originated in
Google and Facebook, respectively, but
have been adopted by organizations of
all sizes. In addition to these specific
technologies, the principles and les-
sons from hyperscale infrastructure
may assist practitioners in building
better systems in general.

This article provides a high-level
overview of Meta’s hyperscale infra-
structure, focusing on key insights
from its development, particularly
in systems software. Where relevant,
we highlight differences from public
clouds, as varying constraints have
led to distinct optimizations. Though
much of the knowledge presented here
has been shared and practiced within
the industry and research community,
including insights from our past publi-
cations, the article’s primary contribu-
tion is to provide a holistic perspective
that helps readers build a comprehen-
sive mental model of hyperscale infra-
structure end to end.

Engineering Culture
Before delving into the details of Me-
ta’s infrastructure, we first highlight
several aspects of the company’s en-
gineering culture, because an organi-
zation’s culture heavily influences its
technology.

Move fast. Since its inception, Face-

H Y PER SC A L ER S , SUCH A S Alibaba, Amazon, ByteDance,
Google, Meta, Microsoft, and Tencent, have developed
planetary-scale infrastructure to deliver cloud, Web, or
mobile services to their global users. And though most
practitioners may not directly build such hyperscale
infrastructure, we believe it is beneficial to learn a bit
about it. Historically, many widely used technologies
have originated from advanced environments,
including mainframes in the 1960s and hyperscale
infrastructures in the past two decades. For instance,
virtual memory had its origin in mainframes and is
now common even in smartwatches. Similarly,

Meta’s
Hyperscale
Infrastructure:
Overview and
Insights

DOI:10.1145/3701296

A look at Meta’s planetary-scale computing
infrastructure, including some key lessons from
its development, as the company pursues its
vision of “all global datacenters as a computer.”

BY CHUNQIANG TANG

52 COMMUNICATIONS OF THE ACM | FEBRUARY 2025 | VOL. 68 | NO. 2

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 P
E

T
E

R
 C

R
O

W
T

H
E

R
 A

S
S

O
C

I
A

T
E

S

research and advances

 key insights
	˽ Meta’s engineering culture emphasizes

moving fast, technology openness,
research in production, and shared
infrastructure.

	˽ To boost developer productivity, Meta
has adopted continuous deployment
universally and enabled more developers
to write serverless functions rather than
traditional service code.

	˽ To reduce hardware costs, Meta utilizes
hardware-software co-design at the
datacenter scale and autonomously
optimizes resource allocations, including
workload migration, across global
datacenters instead of limiting them to
individual clusters.

	˽ Meta’s AI strategy involves co-designing
the entire stack, from PyTorch to AI
accelerators, networks, and ML models
such as Llama.

book has ingrained and retained the
“move-fast” culture, emphasizing agil-
ity and rapid iteration. This philosophy
is evident in its strong commitment
to continuous software deployment,
which involves releasing the latest
code into production as early as pos-
sible. Additionally, product engineers
predominantly write code in stateless,
serverless functions in PHP, Python,
and Erlang for their benefits in simplic-
ity, productivity, and iteration speed.
Teams have the ability to quickly pivot
their execution priorities without un-
dergoing a lengthy replanning pro-
cess, leaving ambiguous issues to be
sorted out during iterative execution.
This allows teams to quickly adapt and
launch new products in response to
evolving market conditions.

Technology openness. Meta cham-
pions technology openness, both in-
ternally and externally. Internally, we
adopt the monorepo approach, stor-
ing the code for all projects in a single
repository to facilitate code discovery
and reuse, as well as cross-team con-
tributions. While other organizations
also use monorepos, they vary in the
degree of openness. Some require
designated owners for each project,
with only these owners authorized to
accept code changes, although oth-
ers may propose changes. In contrast,
with few exceptions, the vast majority
of projects at Meta do not enforce such
strict ownership rules. This openness
encourages cross-team contributions
and code reuse while discouraging the
reinvention of similar technologies.

At Meta, engineers directly commit
code changes to the mainline of the
monorepo, and software deployments
are compiled from the mainline, that
is, from the latest code, as opposed to
some stable branches. For example,
when a widely used library, such as
the RPC library, is updated, the next
release of every application dependent
on this library will be automatically
compiled with the latest version.

Externally, Meta’s commitment to
technology openness is demonstrated
through its open-source hardware de-
signs via the Open Compute Project28
and open-source software projects
such as PyTorch, Llama, Presto, Rocks-
DB, and Cassandra. Also, much of
Meta’s infrastructure technology has
been shared through research papers,

with many examples in this article’s
references.

Research in production. Meta’s hy-
perscale infrastructure requires con-
tinuous innovation, but unlike most
hyperscalers, the company does not
have a dedicated systems research lab.
Instead, all of its systems research pa-
pers are authored by teams developing
production systems. These teams ad-
vance the state of the art while tackling
challenging production issues at scale,
then reflect on these experiences to
distill working solutions into research
papers. This approach ensures that the
addressed problems are real and the
solutions work at scale, aligning well
with key criteria for successful systems
research.

Common infrastructure. Some
organizations empower individual
teams to make local decisions about
their technology stack. Meta, however,
prioritizes standardization and global
optimization. On the hardware side,
servers supporting different products
are all allocated from a shared server
pool.34 Moreover, for non-AI compute
workloads, we offer only a single serv-
er type, equipped with one CPU and
the same amount of DRAM (previ-
ously 64GB, now 256GB). Unlike pub-
lic clouds, which must provide various
server types to accommodate diverse
customer applications, Meta can opti-
mize its applications to suit the hard-
ware, thereby avoiding the prolifera-
tion of server types.

Standardization also prevails on
the software side. For instance, dif-
ferent Meta products previously used
Cassandra, HBase, and ZippyDB24
for key-value stores, but now all have
converged to ZippyDB. Further, each
common capability—such as software
deployment,19 configuration manage-
ment,33 service mesh,31 pre-production
performance testing,11 in-production
performance monitoring,39 and in-pro-
duction load testing35—is supported
by a universally adopted tool.

Besides standardization, a key
principle in achieving common in-
frastructure is our preference for re-
usable components over monolithic
solutions. A good example of this is
the component-reuse chain in our dis-
tributed file system, Tectonic.29 Tec-
tonic enhances scalability by using a
distributed key-value store, ZippyDB,24

Unlike public
clouds, which must
provide various
server types to
accommodate
diverse customer
applications, Meta
can optimize its
applications to
suit the hardware,
thereby avoiding
the proliferation of
server types.

54 COMMUNICATIONS OF THE ACM | FEBRUARY 2025 | VOL. 68 | NO. 2

research and advances

ment. In terms of external technology
openness, Threads aims to integrate
with ActivityPub, the open social net-
working protocol, for interoperability
with other apps. We have also publicly
shared our experiences of rapidly de-
veloping Threads.6

Insight 1:
Despite many challenges, it is feasible
for a large organization to maintain
a culture of moving fast, using a com-
mon infrastructure, and sharing a
monorepo without strictly enforcing
code ownership.

End-to-End User Request Flow
We now dive into Meta’s infrastructure
technology. Meta products are sup-
ported by a shared service infrastruc-
ture. To provide a holistic view of this
infrastructure, we explain how a user
request is processed end-to-end, de-
tailing all the components involved.

Request routing. Dynamic DNS map-
ping. When a user initiates a request to
facebook.com, Meta’s DNS server dy-
namically returns an IP address that
is mapped to a Meta-operated small
edge datacenter, known as point of
presence (PoP), as depicted in Figure
1. This dynamic DNS mapping ensures
that the chosen PoP is close to the user,
while balancing load across PoPs. The
user’s TCP connection is terminated
at the PoP, which maintains separate,
long-lived TCP connections with Me-
ta’s datacenters. This split-TCP setup
offers several advantages, including
reduced TCP-establishment latency
through the reuse of pre-established
connections between PoPs and data-

to store its metadata. ZippyDB further
employs a common sharding frame-
work, Shard Manager, to manage its
data shards; Shard Manager, in turn,
depends on Meta’s mesh, ServiceRout-
er,31 for shard discovery and request
routing. Finally, ServiceRouter stores
the service discovery and configura-
tion data of the entire infrastructure,
which is critical for the site’s con-
tinuous operation, in the highly reli-
able, zero-dependency data store De-
los.3 Therefore, the component-reuse
chain is Tectonic→ZippyDB→Shard
Manager→ServiceRouter→Delos. All of
these reusable components also serve
many other use cases. In contrast,
HDFS, a popular open source distrib-
uted file system, is a monolithic system
that implements all of these compo-
nents internally.

Culture case study: The Threads
app. The development of the Threads
app,6 often compared to Twitter/X, ex-
emplifies the aforementioned culture.
Emphasizing moving fast, a small
team developed Threads with just five
months of technical work in a start-
up-like environment. Moreover, once
it was developed, the infrastructure
teams were given only two day’s notice
to prepare for its production launch.
Most large organizations would take
longer than two days just to draft a proj-
ect plan involving dozens of interde-
pendent teams, let alone execute it. At
Meta, however, we quickly established
war rooms across distributed sites,
bringing together both infrastructure
and product teams to address issues in
real time. Despite the tight timeline,
the app’s launch was highly successful,
reaching 100 million users within just
five days, making it the fastest-growing
app in history.6

Common infrastructure was cru-
cial for enabling teams to swiftly im-
plement Threads and scale it reliably.
Threads reused Instagram’s Python
backend as well as Meta’s shared in-
frastructure components, such as
the social-graph database,5 key-value
store,24 serverless platform,30 machine-
learning (ML) training and inference
platforms,10 and configuration-man-
agement framework for mobile apps.20

Meta’s internal technology open-
ness, using a monorepo, allowed
Threads to reuse some Instagram ap-
plication code to accelerate its develop-

centers. A PoP typically has hundreds
of servers but may have up to a few
thousand. Hundreds of PoPs are posi-
tioned worldwide to ensure that most
users have a PoP close to them, thereby
ensuring short network latencies.

Static-content caching. If the user
request is for static content, such as
images and videos, it can be directly
served at the PoP if the content is al-
ready cached there. Additionally, static
content may be cached by the content
delivery network (CDN), as shown in
Figure 1. When a significant volume of
Meta product traffic originates from
an Internet service provider’s (ISP’s)
network, Meta seeks to establish a mu-
tually beneficial partnership by pro-
viding Meta Network Appliances to be
hosted in the ISP’s network to cache
static content, thereby forming a CDN
site. A CDN site typically has tens of
servers, with some having more than
a hundred. Thousands of CDN sites
across the globe form our CDN for dis-
tributing static content.

Meta products use URL rewrites to
redirect user requests to a nearby CDN
site. When a Meta product provides a
URL for a user to access static content,
it rewrites the URL, for example, from
facebook.com/image.jpg to CDN109.
meta.com/image.jpg. If the image is
not cached at CDN109 when the user re-
quests it, CDN109 forwards the request
to a nearby PoP. The PoP then forwards
the request to the load balancer in a
datacenter region, which retrieves the
image from the storage system. On the
return path, both the PoP and the CDN
site cache the image for future use.

Dynamic-content request routing. If

Figure 1. Meta’s global infrastructure.

Internet

CDN
Site

Users

Datacenter Region

Point of
Presence

(PoP)

Express
Backbone

Datacenter Region

Edge
Datacenter

Edge
Datacenter

Edge
Datacenter

Datacenter

Datacenter

Datacenter

Fabric
Aggregator

Datacenter

Datacenter

Datacenter

Fabric
Aggregator

Private
Wide-Area
Network

FEBRUARY 2025 | VOL. 68 | NO. 2 | COMMUNICATIONS OF THE ACM 55

research and advances

Edge network. A PoP is connected
to multiple autonomous systems on
the Internet and typically has multiple
paths to reach a user network. When
choosing a path between a PoP and a
user, Border Gateway Protocol (BGP),
by default, does not consider network
capacity and performance. The PoP’s
network, however, takes these factors
into consideration and advertises its
preferred route to a network prefix.32

Datacenter network. Servers in a
datacenter are interconnected by a
datacenter fabric,2 where network
switches form a three-level Clos topol-
ogy that can be scaled incrementally
by adding more switches at the top
level. With a sufficient number of top-
level switches, the fabric can provide a
non-blocking and non-oversubscribed
network, enabling communication be-
tween any two servers at their full NIC
bandwidth. We are moving toward
eliminating network oversubscription
within a datacenter.

Regional network. A fabric aggrega-
tor14 connects datacenters within a
region and further connects them to
our private WAN. The fabric aggrega-
tor employs a topology akin to the fat
tree, enabling the incremental addi-
tion of more switches to boost band-
width. We aim to significantly reduce
network oversubscription in a region
so that cross-datacenter communi-

Insight 2:
Meta’s global infrastructure consists
of CDN sites, edge datacenters, and
main datacenters. Because of the high
volume of our internal cross-datacen-
ter traffic, we have built a private WAN
to connect our datacenters, rather
than relying on the public Internet.

Infrastructure topology. The table
summarizes the aforementioned in-
frastructure components. Globally,
there are tens of datacenter regions,
hundreds of edge datacenters (PoPs),
and thousands of CDN sites. Each
datacenter region has multiple data-
centers located within the radius of
a few miles. Each datacenter uses up
to a dozen main switchboards (MSBs)
for power distribution, which also act
as the primary sub-datacenter fault
domains. An MSB failure can render
10 to 20 thousand servers unavail-
able.

the user request is for dynamic content
such as a newsfeed, the PoP forwards
it to a datacenter region. The selection
of the target region is guided by a traf-
fic-engineering tool9 that periodically
computes the optimal distribution of
global traffic from PoPs to datacenters,
considering factors such as datacenter
capacity and network latency.

PoP-to-datacenter traffic travels
through Meta’s private wide-area net-
work (WAN),12 which globally inter-
connects Meta’s PoPs and datacenters
using optical fibers spanning tens of
thousands of miles. Internal network
traffic among our datacenters and
PoPs significantly surpasses external-
facing traffic between users and PoPs
by several orders of magnitude, pri-
marily due to data replication across
datacenters and interactions among
our microservices. The private WAN
provides high bandwidth to serve this
internal traffic.

Table. Number and size of infrastructure components.

Entity type Entity count Servers in each entity

Region O(10) Up to one million

PoP O(100) Typically O(100) but up to O(1,000)

CDN site O(1,000) Typically O(10) but up to 100+

Datacenter Multiple datacenters per region O(100,000)

MSB Up to a dozen MSBs per datacenter Typically 10K to 20K

Figure 2. High-level architecture of software components running in a datacenter region. This is a highly simplified diagram, as Meta
internally has O(10,000) backend services that exhibit a complex call graph.

Data logging

Real-time user-request processing Offline processing

Storage

Real-time RPC Invocation Data flow

Databases and caches

Data warehouse

Event-driven
serverless
functions

Event
queue

ML
training

Update

Update

ML
inference

Backend
services

Frontend
serverless
functions

Lo
ad

 b
al

an
ce

r

U
se

r
re

qu
es

ts

Stream
processing

Batch and
interactive

data
analytics

Enqueue events to be processed asynchronously, for example, sending confirmation emails

56 COMMUNICATIONS OF THE ACM | FEBRUARY 2025 | VOL. 68 | NO. 2

research and advances

“batch analytics,” powered by Spark
and Presto, can periodically perform
operations such as updating friend
recommendations in response to new
activities on the site. Finally, data up-
dates in the data warehouse serve as a
primary event source that triggers the
execution of event-driven serverless
functions.30

Insight 3:
Using a data warehouse as an in-
termediate layer to decouple online
and offline processing simplifies the
architecture and enables independent
optimizations.

Boosting Developer Productivity
A main purpose of a shared infrastruc-
ture is to boost developer productiv-
ity. While it is widely recognized that
continuous software deployment and
serverless functions can help make de-
velopers more productive, we have tak-
en these approaches to the extreme.

Continuous deployment. Aligning
with the move-fast culture, we take
continuous deployment of both code
and configuration to extreme speeds
and scales, enabling developers to
quickly release new features and bug
fixes, receive immediate feedback, and
iterate rapidly.

For configuration changes, our con-
figuration-management tool33 deploys
more than 100,000 live changes daily
in production, spanning O(10,000)
services and millions of servers. These
changes facilitate a variety of tasks, in-
cluding load balancing,9,31 feature roll-
outs, A/B tests, and overload protec-
tion.25 At Meta, nearly every engineer
who writes code also makes live con-
figuration changes in production. Fol-
lowing the configuration-as-code para-
digm, manual configuration changes
undergo peer code review before being
committed to a code repository. Once
committed, these changes immedi-
ately enter the continuous deployment
pipeline. Within seconds, the updated
configuration can be pushed to po-
tentially millions of subscribed Linux
processes, triggering an upcall notifi-
cation. The processes can immediately
adjust their runtime behavior without
restarts. In addition to manual chang-
es, automation tools also drive config-
uration changes, for example, for load
balancing.9,31

cation within a region is not a bottle-
neck. This allows most services, except
for ML training, to be scattered across
datacenters in a region without worry-
ing about a significant performance
penalty.

Request processing. Online process-
ing. When a user request reaches a
datacenter region, it is processed along
the path depicted in Figure 2. The load
balancer spreads user requests across
tens of thousands of servers that ex-
ecute “frontend serverless functions.”
To process a user request, a frontend
serverless function may invoke many
backend services, some of which may
further call “ML inference,” for exam-
ple, to retrieve recommendations for
ads or newsfeed content.

During its execution, a frontend
serverless function can enqueue
events in the “event queue” for “event-
driven serverless functions”30 to pro-
cess asynchronously. One such event
could be sending a confirmation
email after the user performs an ac-
tion on the site. While frontend server-
less functions directly affect user-per-
ceived response time and hence have
a tight latency service-level objective
(SLO), event-driven serverless func-
tions work asynchronously without af-
fecting user-perceived response time,
and are optimized for throughput
and hardware utilization instead of
latency. The ratio of servers executing
frontend serverless functions to event-
driven serverless functions is approxi-
mately 5:1.

Offline processing. The components
on the right side of Figure 2 perform
various offline processing to assist
online processing on the left side. De-
coupling online and offline process-
ing enables independent optimization
based on their respective workload
characteristics. When handling user
requests, frontend serverless func-
tions and backend services log various
types of data, such as ad-click-through
or video-watch metrics, into the “data
warehouse.” This data feeds various
offline processing. For instance, “ML
training”10 uses the data to update
ML models, while “stream process-
ing” can use the data to update the
most-discussed topics on the site and
store them in “databases and caches,”
which are then used during online
user-request processing. Additionally,

Aligning with the
move-fast culture,
we take continuous
deployment of
both code and
configuration to
extreme speeds and
scales, enabling
developers to
quickly release
new features
and bug fixes,
receive immediate
feedback, and
iterate rapidly.

FEBRUARY 2025 | VOL. 68 | NO. 2 | COMMUNICATIONS OF THE ACM 57

research and advances

worthwhile, as it significantly boosts
developer productivity.

Insight 4:
Even for a large organization with
O(10,000) services, it is feasible to
adopt continuous deployment at ex-
treme scales and speeds. Specifically,
97% of our services adopt fully auto-
mated deployments without manual
intervention, and 55% deploy every
code change instantly.

Serverless functions. The wide-
spread use of serverless functions
(also known as function-as-a-service
or FaaS) is another key driver that
boosts developer productivity. Unlike
traditional backend services, which
can exhibit arbitrary complexity, FaaS
is stateless and implements a simple
function interface.30 Each FaaS in-
vocation is managed independently,
with no side effects on other con-
current invocations, except through
states stored in external databases.
Due to its stateless nature, FaaS re-
lies heavily on external caching sys-
tems5,27 to achieve good performance
when accessing databases.

Developers write FaaS code and
leave it to the infrastructure to handle
everything else through automation,
including code deployment and auto-
scaling in response to load changes.
This simplicity allows Meta’s more
than 10,000 product developers to fo-
cus solely on product logic without
concern for infrastructure manage-
ment. Moreover, it prevents hardware
waste caused by product developers
over-provisioning resources.

Meta takes the usage of FaaS to the
extreme to maximize developer pro-
ductivity. Among O(10,000) engineers
at Meta, the number of engineers
writing FaaS code is about 50% great-
er than those writing code for regular
services that they operate by them-
selves. This success is attributed not
only to relieving product engineers of
managing infrastructure but also to
the usability of the integrated devel-
opment environment (IDE) for FaaS.
This IDE enables easy access to the
social-graph database5 and various
backend systems through high-level
language constructs. It also provides
fast feedback through continuous in-
tegration tests.

For code changes, our deployment
tool19 manages more than 30,000 pipe-
lines to deploy software upgrades. At
Meta, 97% of services adopt fully auto-
mated software deployments without
any manual intervention: 55% utilize
continuous deployment, instantly
deploying every code change to pro-
duction after passing automated
tests, while the remaining 42% are
automatically deployed on a fixed
schedule, mostly daily or weekly. Take
the frontend serverless functions in
Figure 2 as an example. They run on
more than half a million servers, with
more than 10,000 product developers
changing their code and thousands of
code commits every workday. Despite
this extremely dynamic environment,
a new version of all serverless func-
tions is released into production every
three hours.

Even our network software is de-
signed like regular services and op-
timized for frequent updates. For ex-
ample, our private WAN12 divides its
network topology into multiple paral-
lel planes, each responsible for a por-
tion of the traffic and equipped with
its own controller. This enables fre-
quent updates of the controller soft-
ware. Developers can experiment with
new control algorithms by diverting
traffic from one plane and deploying
the new algorithm exclusively within
that plane, without affecting other
planes. Similarly, our network switch
software8 undergoes frequent updates,
just like standard services. Leveraging
the switch ASIC’s “warm boot” feature,
the data plane keeps forwarding traffic
while the switch software undergoes
an update.

Frequent code and configuration
updates enable agile software devel-
opment but increase the risk of site
outages. To address this risk, we invest
heavily in testing, staged rollouts, and
health checks during updates.19,33 Pre-
viously, we launched a company-wide
campaign to boost code-deployment
automation, increasing the adoption
of fully automated code deployment
guarded by health checks from 12%
to 97%. Similarly, we implemented
another initiative to ensure that all
configuration changes undergo auto-
mated canary tests to uphold configu-
ration safety. Overall, we find these in-
vestments in continuous deployment

Developers write
FaaS code and
leave it to the
infrastructure to
handle everything
else through
automation,
including code
deployment and
auto-scaling in
response to load
changes.

58 COMMUNICATIONS OF THE ACM | FEBRUARY 2025 | VOL. 68 | NO. 2

research and advances

size may dynamically grow or shrink.
During runtime, our container-man-
agement tool34 allocates containers
in these virtual clusters, often spread-
ing a job’s containers across multiple
datacenters in the same region for im-
proved fault tolerance. Finally, at the
server level, our kernel mechanisms21,37
ensure proper sharing and isolation of
memory and I/O resources allocated to
individual containers.

Stateful services, such as databas-
es, benefit from Global-DaaC. These
services are typically sharded, with
each container hosting multiple data
shards for efficiency. Our global ser-
vice placer (GSP) uses constrained op-
timization to determine the optimal
number of replicas for each data shard
and their placement across regions.
Then, our sharding framework23 works
within the constraints set by GSP to al-
locate shard replicas to containers and
dynamically migrate them in response
to load changes.

Similarly, ML workloads benefit
from Global-DaaC. For ML inference,
models are managed similarly to data
shards, with the number of model rep-
licas and their locations determined
by GSP. For ML training, it requires
the collocation of training data and
GPUs in the same datacenter region.
Each team receives a global GPU ca-
pacity quota and submits training jobs
to a global job queue. Our ML train-
ing scheduler10 automatically selects
regions for data replication and GPU
allocation to ensure the colocation of
data and GPUs while maximizing GPU
utilization.

Insight 6:
Meta is evolving from the practice of
“the datacenter as a computer”4 to
the vision of “all global datacenters
as a computer.”40 In this model, the
infrastructure autonomously deter-
mines and migrates deployments
across global datacenters in response
to workload changes, eliminating
the need for user involvement. We
have successfully demonstrated this
approach for databases, ML systems,
and diverse services operating at
the scale of O(100,000) servers and
O(100,000) GPUs.

Hardware and software co-design.
While hardware and software co-de-

ity, another main purpose of a shared
infrastructure is to lower the cost of
hardware. In this section, we highlight
several examples of how software solu-
tions help reduce hardware costs.

All global datacenters as a com-
puter. Most infrastructures place the
burden of managing the complexities
of geo-distributed datacenters on us-
ers, requiring them to manually deter-
mine the number of replicas for their
services and select the regions for
deployment, all while ensuring that
service-level objectives are met. This
complexity often leads to hardware
wastage due to overprovisioning, un-
even load distribution across regions,
and insufficient cross-region migra-
tion to adapt to changes in workload
demand and datacenter supply.

In contrast, Meta is evolving from
the practice of “the datacenter as a
computer”4 (DaaC) to the vision of “all
global datacenters as a computer”
(Global-DaaC).40 With Global-DaaC,
users simply request the global de-
ployment of a service, leaving the in-
frastructure to manage all the details:
determining the optimal number of
service replicas, placing these replicas
across datacenter regions based on
service-level objectives and available
hardware, selecting the best-match-
ing hardware type, optimizing traffic
routing, and continuously adapting
service placement in response to work-
load changes. Compared with public
clouds, Meta can more easily realize
Global-DaaC because it owns all its ap-
plications and can move them across
regions as needed; public clouds lack
this flexibility with their customers’
applications.

To implement Global-DaaC, our
tools seamlessly coordinate resource
allocation across all levels: global, re-
gional, and within individual servers.
First, our global capacity-management
tool13 uses RPC tracing to identify ser-
vice dependencies and construct re-
source-consumption models, then em-
ploys mixed-integer programming to
break down a service’s global capacity
needs into regional quotas. Next, our
regional capacity-management tool26
assigns server resources to these re-
gional quotas to form virtual clusters.
Unlike physical clusters, a virtual clus-
ter can comprise servers from different
datacenters in the same region, and its

As shown in Figure 2, Meta oper-
ates two FaaS platforms: one for fron-
tend serverless functions and another
for event-driven serverless functions.
We refer to them as FrontFaaS and
XFaaS,30 respectively. FrontFaaS func-
tions are written in PHP (we also have
FaaS platforms for Python, Erlang, and
Haskell functions). To support the high
load generated by billions of users, we
maintain over half a million servers
that keep the PHP runtime running at
all times. When a user request arrives,
it is routed to one of these servers for
immediate processing, without experi-
encing cold start time. When the site’s
load is low, we utilize auto-scaling to
release some FrontFaaS servers for
other services to use.

XFaaS shares many similarities
with FrontFaaS, the key difference be-
ing that it executes non-user-facing
functions that do not require sub-
second response times but exhibit a
highly spiky load pattern.30 To avoid
overprovisioning resources for peak
loads, XFaaS employs a combination
of optimizations to spread out func-
tion execution, including deferring the
execution of delay-tolerant functions
to off-peak hours, globally load-bal-
ancing function calls across regions,
and implementing throttling based on
quotas.

Product developers at Meta have
been using FaaS as their primary cod-
ing paradigm since the late 2000s, even
before the term FaaS became popular.
Compared with serverless platforms
in the industry, a unique aspect of our
serverless platforms is that they allow
multiple functions to execute concur-
rently in the same Linux process for
higher hardware efficiency,30 unlike
public clouds that have to execute one
function per virtual machine in order
to ensure stronger isolation between
different customers.

Insight 5:
Serverless functions have become the
primary coding paradigm for prod-
uct development at Meta. More than
10,000 Meta engineers write code for
serverless functions, exceeding the
number of engineers writing regular
service code by 50%.

Reducing Hardware Costs
Besides boosting developer productiv-

FEBRUARY 2025 | VOL. 68 | NO. 2 | COMMUNICATIONS OF THE ACM 59

research and advances

Though our infrastructure is de-
signed to withstand the loss of an en-
tire datacenter region without affect-
ing users, the increasing number of
regions has raised the possibility of
two nearby regions being simultane-
ously affected by a large-scale natural
disaster such as a hurricane. Instead
of over-provisioning capacity to toler-
ate the simultaneous loss of two re-
gions, we employ a software-based
approach25 that, in the event of losing
multiple regions, deactivates less-criti-
cal product features and gracefully de-
grades service quality, such as deliver-
ing lower-quality videos, to reduce the
load.

Eliminating the costs of routing prox-
ies. Unlike traditional service meshes
that predominantly use sidecar prox-
ies to route RPC requests, Meta’s ser-
vice mesh31 uses proxies to route only
1% of RPC requests across our fleet.
The remaining 99% use a routing li-
brary linked into service executables
for direct client-to-server routing, by-
passing intermediate proxies. While
this unconventional approach saves us
O(100,000) servers needed for proxies,
it introduces deployment challenges
due to the library being compiled into
around O(10,000) services, each with
its own deployment schedule. Our
software deployment and configura-
tion-management tools19,33 help make
these challenges manageable.

Tiered storage and local SSDs. Based
on access frequency and latency toler-
ance, we categorize data as hot, warm,
or cold, with each category using a
different storage system to optimize
cost-effectiveness. Hot databases and
caches, such as the social graph data-
base,5 store data in memory and solid
state drives (SSDs).

Warm data, including videos, imag-
es, and data in the data warehouse (for
example, user activity logs), is stored in
a distributed file system29 that utilizes
hard disk drives (HDDs) to store data.
Each storage server is equipped with
one CPU, 36 HDDs, and two SSDs for
metadata cache.

For rarely accessed cold data, such
as a decade-old high-resolution video,
we archive them with high-density
HDD servers, each with one CPU and
216 HDDs, which provides a good bal-
ance between total cost of ownership
and data-restoration speed. These

sign within a single server is common,
we have elevated it to the global scale
to use software solutions to overcome
the limitations of lower-cost hardware.

Low-cost fault tolerance. Public
clouds tend to provide hardware with
higher availability because their cus-
tomers’ applications might not be
sufficiently fault tolerant. In contrast,
since all our applications are under
our control, we can ensure they are
implemented in a fault-tolerant man-
ner to run on cheaper hardware with
lower availability guarantees. For ex-
ample, a server rack in public clouds
may use dual power supplies and dual
top-of-rack (ToR) switches to ensure
high availability and facilitate switch
maintenance without disrupting run-
ning workloads. In contrast, our racks
have neither dual power supplies nor
dual ToR switches. Instead, hardware
redundancies occur only at the much
larger scope of the power main switch-
boards (MSBs), each covering about
10,000 to 20,000 servers. For every six
MSBs, there is only one reserve MSB as
a backup. Moreover, virtual machines
(VMs) in public clouds often use net-
work-attached block devices, which
enable live VM migration. In contrast,
our containers use low-cost, directly
attached SSDs for root disks, which
hinders live-container migration dur-
ing datacenter maintenance opera-
tions.

We use software solutions to over-
come the limitations of lower-cost
hardware. First, our resource-alloca-
tion tools23,26,34 ensure that a service’s
containers and data shards are suf-
ficiently spread across different sub-
datacenter fault domains (MSBs) for
better fault tolerance. Second, through
a cooperative protocol that allows a
service to weigh in on the lifecycle
management of its containers,19 we
ensure that maintenance operations
respect application-level constraints,
such as avoiding simultaneous shut-
downs of two replicas of the same
data shard. Finally, Global-DaaC en-
sures that services are deployed to
withstand the simultaneous loss of an
entire datacenter region, one MSB in
each region, and a certain percentage
of random servers in each region. We
routinely conduct tests in production
to ensure that these properties hold so
our services are fault tolerant.36

Global-DaaC
ensures that
services are
deployed to
withstand the
simultaneous
loss of an entire
datacenter region,
one MSB in each
region, and a certain
percentage of
random servers in
each region.

60 COMMUNICATIONS OF THE ACM | FEBRUARY 2025 | VOL. 68 | NO. 2

research and advances

work resource usage and faster conver-
gence during network failures.

For key-value stores, DHTs use
multi-hop routing to determine the
server responsible for a given key,
while Cassandra uses consistent hash-
ing for this purpose. Both function
without a central controller. In con-
trast, to achieve better load balance,
our sharding framework23 uses a cen-
tral controller to dynamically reassign
key-encapsulating shards to servers.

For bulk-data distribution, we tran-
sitioned from BitTorrent to Owl,16
which centralizes the decision of where
a peer should fetch data, resulting in
significantly faster download speeds.
Note that both Owl and our private
WAN12 centralize the control plane for
better decision making but still use a
decentralized data plane for actual
data forwarding or downloading.

For small-metadata distribution
(further explained in Figure 4), we ini-
tially used a three-level distribution
tree implemented in Java. The tree’s
intermediate nodes were dedicated
proxy servers, and its leaf nodes were
application subscribers that could dy-
namically join and leave. When this
implementation could not scale fur-
ther, we transitioned to a peer-to-peer
distribution tree, where intermediate
nodes were also application subscrib-
ers that forwarded data to other sub-
scribers. Among millions of applica-
tion subscribers, however, a subset
often experienced noisy performance
issues due to their non-dedicated na-
ture. Consequently, using them as in-
termediate nodes to forward traffic
was less reliable, leading to frequent
and time-consuming debugging.
Eventually, after a few years of pro-
duction use, we abandoned the peer-
to-peer distribution tree and reverted
to the original architecture that uses
dedicated proxy servers. We replaced

of network switches and their com-
panion software8 enables us to treat
switch software like a regular service
and deploy updates frequently. Most of
our hardware designs are open source
through the Open Compute Project.28

Insight 8:
To reduce hardware costs and power
consumption, Meta designs its own
datacenters, servers, racks, and
network switches, and shares these
designs through open source.

Designing Scalable Systems
A recurring theme in hyperscale infra-
structure is the design of scalable sys-
tems. Decentralized systems designed
for the Internet environment, such as
BGP, BitTorrent, and distributed hash
tables (DHTs), are often lauded for
their scalability. However, in a datacen-
ter environment, which is less resource
constrained and under the control of a
single organization, our experiences
indicate that centralized controllers
not only achieve ample scalability but
also are simpler and can make higher-
quality decisions.

Deprecating decentralized control-
lers. In this section, we discuss several
examples of the trade-off between cen-
tralized and decentralized controllers.
For network switches in our datacenter
fabric, although they still use BGP for
compatibility, the fabric has a central-
ized controller capable of overriding
routing paths during network conges-
tion or link failures.1

Except for BGP, we have migrated
almost all decentralized controllers to
centralized ones. For example, in our
private WAN,12 we transitioned from
decentralized RSVP-TE to a centralized
controller to compute preferred traffic
paths and proactively establish backup
paths for common failure scenarios.
This has resulted in more efficient net-

HDDs are powered off most of the
time, as they are not in active use.

Among workloads that store data
on SSDs, some can tolerate longer-tail
latencies and opt for SSD-based shared
remote storage for better SSD utiliza-
tion. However, workloads with strict
latency requirements still use directly
attached local SSDs. Compared with
other hyperscale infrastructures, we
more frequently employ local SSDs
to reduce costs, despite the manage-
ment complexities involved. For in-
stance, imbalanced load distribution
can lead to the underutilization and
stranding of local SSDs. Additionally,
failure recovery is complicated by data
becoming trapped in the SSDs of failed
servers. To address these challenges,
we use our common sharding frame-
work23 to implement stateful services
with local SSDs, solving the issues
once and reusing the solution across
many services.

Insight 7:
To reduce hardware costs, we use soft-
ware solutions to overcome the limita-
tions of lower-cost hardware. Although
this approach adds complexity to the
software stack, we consider the trade-
off worthwhile due to the significant
cost savings.

In-house hardware design. We de-
sign our own datacenters17 and hard-
ware—servers, network switches,
video accelerators, and AI chips15—for
better costs and power efficiency. In
datacenters, power is the most con-
strained resource because it is fixed
at the time of datacenter construc-
tion and hard to expand later during
a datacenter’s 20-to-30-year lifespan.
In contrast, the network and servers
can be upgraded as needed. Power in
a datacenter is often oversubscribed.
To prevent over-drawing power when
workloads surge, an automation tool38
coordinates power-capping actions
across the power-delivery hierarchy.

Our hardware designs often achieve
cost and power savings through hard-
ware/software co-design (for example,
optimizing SRAM usage in our AI
chip based on our workloads15), and
by removing components unneces-
sary to us (for example, eliminating
compressor-cooled air conditioning17).
Additionally, in-house development

Figure 3. Sidecar-proxy-based service mesh.

Service A

L7 Proxy

Server 1

Service B

L7 Proxy

Server 4

Service B

L7 Proxy

Server 3

Service B

L7 Proxy

Server 2

Control Plane

FEBRUARY 2025 | VOL. 68 | NO. 2 | COMMUNICATIONS OF THE ACM 61

research and advances

of the control plane. Heterogeneous L7
routers are supported, which can be
load balancers, services with embed-
ded routing libraries, or sidecar proxies.

As ServiceRouter shows, we can
achieve good scalability with central-
ized controllers through techniques
like stateless controllers, controller
sharding, and removing non-essential
functions, such as managing individu-
al L7 routers, from central controllers.

Future Directions
Despite the complexity of Meta’s hy-
perscale infrastructure, here we pro-
vided a concise, high-level overview,
emphasizing key insights from its de-
velopment. To conclude, we share our
thoughts on potential future trends for
hyperscale infrastructure.

AI. AI workloads have become the
single largest category of workload in
datacenters. We anticipate that, before
the end of this decade, more than half
of the power in datacenters will be dedi-
cated to AI workloads. Due to its distinct
characteristics, such as being more
resource-intensive and requiring high-
er-bandwidth networks, AI is expected
to profoundly reshape every aspect of
infrastructure. In the past two decades,
hyperscale infrastructures have suc-
ceeded mostly by taking the scaling-out
approach to utilize a large number of
low-cost commodity servers. Future AI
clusters, however, will more likely take
the scale-up approach used by past su-
percomputers, such as using remote
direct memory access (RDMA) over Eth-
ernet to provide the high-bandwidth,
low-latency network required for large-
scale ML training.18 Meta’s approach to
AI is distinguished by co-designing the
full stack, from PyTorch to ML models,
AI chips, networks, datacenters, serv-
ers, storage, power, and cooling.

Domain-specific hardware. Revers-
ing the trend of diminishing hardware
diversity in the 2000s, we anticipate a
proliferation of custom and specialized
hardware for various purposes, such
as AI training and inference, virtual-
ization, video encoding, encryption,
compression, tiered memory, as well as
in-network and in-storage processing.
This is because economies of scale al-
low hyperscalers to design and deploy
specialized hardware in large quanti-
ties to reduce costs. Consequently, this
will pose challenges for the software

scalable for hyperscale infrastructure
because the central controller cannot
scale to directly configure the routing
tables of millions of sidecar proxies.
The central controller has a dual func-
tion of generating global routing meta-
data and managing each L7 router. To
scale out, we keep the former in the cen-
tral controller but transfer the latter to
L7 routers, making each L7 router self-
configuring and self-managing.

Figure 4 illustrates the scalable ar-
chitecture of ServiceRouter. At the top,
different controllers independently
execute distinct functions such as reg-
istering services, updating measured
network latencies, and computing a
per-service cross-region routing table.
Each controller independently updates
the central routing information base
(RIB) and is not concerned with config-
uring or managing individual L7 rout-
ers. The RIB is a Paxos-based database3
and can scale out through sharding.
With the help of the RIB, the control-
lers become stateless and can easily
scale out through sharding as well. For
example, multiple controller instances
can concurrently compute cross-region
routing tables for different services.

In the middle of Figure 4, the distri-
bution layer leverages thousands of RIB
replicas to handle read traffic from mil-
lions of L7 routers. At the bottom, guid-
ed by the RIB, each L7 router self-con-
figures without the direct involvement

the original Java implementation with
a more performant C++ implementa-
tion, which scaled well to tens of mil-
lions of subscribers.

Insight 9:
In a datacenter environment, we prefer
centralized controllers over decen-
tralized ones due to their simplicity
and ability to make higher-quality
decisions. In many cases, a hybrid
approach—a centralized control
plane combined with a decentralized
data plane—provides the best of both
worlds.

Case study: Scalable service mesh.
In this section, we use Meta’s service
mesh, ServiceRouter,31 as a case study
to illustrate the design of scalable sys-
tems and demonstrate that central-
ized controllers combined with a de-
centralized data plane can scale well
in a datacenter environment. ServiceR-
outer routes billions of RPCs per sec-
ond across millions of layer-7 (L7, that
is, application layer) routers.

Figure 3 depicts a commonly used
service mesh in the industry, where
each service process is accompanied by
an L7 sidecar proxy that routes RPCs for
the service. For example, when service
A on server 1 sends requests to service
B, the proxy on server 1 load balances
them across servers 2, 3, and 4. While
this solution is widely adopted, it is not

Figure 4. ServiceRouter’s scalable service-mesh architecture.

…

Logging and monitoring metrics reporting

Dedicated
Load Balancer Service

Data
Warehouse

Independent
Controllers

Service Sidecar
Proxy

Cached
small subset
of the RIB

Routing Information Base (RIB)
� Service discovery info (for example,
 service name, IP, and port)
� Per-service routing config (for example, RPC timeout)
� Cross-region routing info (for example, latency
 and traffic matrix)

The data distribution layer
massively replicates the RIB
database to help scale out

RIB
Replicas

Server

library

62 COMMUNICATIONS OF THE ACM | FEBRUARY 2025 | VOL. 68 | NO. 2

research and advances

stack in utilizing and managing a high-
ly heterogeneous fleet.

Edge datacenters. We expect a sub-
stantial increase in metaverse and Inter-
net of Things (IoT) applications. Cloud
gaming, for instance, shifts graphics
rendering from user devices to GPU
servers in edge datacenters, necessitat-
ing less than 25ms network latency. The
demand for real-time responsiveness
will likely drive considerable growth in
both the quantity and size of edge data-
centers. As a result, the infrastructure
control plane needs to adapt to manag-
ing a more dispersed fleet, ideally by en-
hancing Global-DaaC to shield applica-
tion developers from the complexity of
a dispersed infrastructure.

Developer productivity. Over the
past two decades, automation tools
have significantly boosted the produc-
tivity of system administrators, result-
ing in a considerably higher server-
to-administrator ratio. In contrast,
general software development remains
labor-intensive, with comparatively
slower productivity growth. In this de-
cade, we anticipate a shift in this trend,
with developer productivity increasing
rapidly for two reasons: AI-powered
code generation and debugging, and
fully integrated serverless program-
ming paradigms in vertical domains.
Meta’s FrontFaaS is an example of the
latter, and we predict the emergence of
highly productive programming para-
digms for more vertical domains.

We anticipate that the rapid innova-
tion in hyperscale infrastructure seen
over the past two decades will continue
into the next decade, driven especially
by advancements in AI. We encourage
hyperscalers to share their insights,
enabling the community to collectively
accelerate progress.

Acknowledgments
This article summarizes the work done
by thousands of Meta infrastructure
engineers over a time span of more
than a decade. While the author con-
tributed to some systems described
in this article,7,10,11,13,19–24,26,30,31,33,34,37,39,40
there are also many systems that the
author did not work on directly. 

References
1.	 Abhashkumar, A. et al. Running BGP in data centers

at scale. In Proceedings of the 18th USENIX Symp.
on Networked Systems Design and Implementation.
USENIX, (2021), 65–81.

2.	 Andreyev, A. Introducing data center fabric, the
next-generation Facebook data center network.
Engineering at Meta, (2014); https://engineering.
fb.com/production-engineering/introducing-data-
center-fabric-the-next-generation-facebook-data-
center-network/

3.	 Balakrishnan, M. et al. Virtual consensus in Delos. In
Proceedings of the 14th USENIX Symp. on Operating
Systems Design and Implementation. USENIX,
(2020), 617–632.

4.	 Barroso, L.A., Hölzle, U., and Ranganathan, P. The
Datacenter as a Computer: Designing Warehouse-
Scale Machines. Springer Nature, (2019).

5.	 Bronson, N. et al. TAO: Facebook’s distributed data
store for the social graph. In Proceedings of the 2013
USENIX Annual Technical Conf. USENIX, (2013),
49–60.

6.	 Campbell, L. and Tang, C. How Meta built the
infrastructure for Threads. Engineering at Meta,
(2023); https://engineering.fb.com/2023/12/19/core-
infra/how-meta-built-the-infrastructure-for-threads/

7.	 Chen, G.J. et al. Realtime data processing at
Facebook. In Proceedings of the 2016 Intern. Conf.
on Management of Data. ACM, (6), 1087–1098.

8.	 Choi, S. et al. FBOSS: Building switch software at
scale. In Proceedings of the 2018 Conf. of the ACM
Special Interest Group on Data Communication.
ACM, (2018), 342–356.

9.	 Chou, D. Tajji: Managing global user traffic for large-
scale Internet services at the edge. In Proceedings
of the 27th Symp. on Operating Systems Principles.
ACM, (2019), 430–446.

10.	 Choudhury, A. et al. MAST: Global Scheduling of
ML Training across Geo-Distributed Datacenters
at Hyper- scale. In Proceedings of the 18th
USENIX Symp. on Operating Systems Design and
Implementation. USENIX, (2024).

11.	 Chow, M. et al. ServiceLab: Preventing tiny
performance regressions at hyperscale through pre-
production testing. In Proceedings of the 28th Symp.
on Operating Systems Principles. ACM, (2024).

12.	 Denis, M. et al. EBB: Reliable and evolvable express
backbone network in Meta. In Proceedings of the
ACM SIGCOMM 2023 Conf. ACM, (2023), 346–359.

13.	 Eriksen, M. et al. Global capacity management with
Flux. In Proceedings of the 17th USENIX Symp. on
Operating Systems Design and Implementation.
USENIX, (2023).

14.	 Ferreira, J. et al. Fabric Aggregator: A flexible
solution to our traffic demand. Engineering at Meta,
(2014); https://engineering.fb.com/data-center-
engineering/fabric-aggregator-a-flexible-solution-to-
our-traffic-demand/

15.	 Firoozshahian, A. et al. MTIA: First generation
silicon targeting Meta’s recommendation systems.
In Proceedings of the 50th Annual Intern. Symp. on
Computer Architecture. ACM, (2023), 1–13.

16.	 Flinn, J. et al. Owl: Scale and flexibility in
distribution of hot content. In Proceedings of the 16th
USENIX Symp. on Operating Systems Design and
Implementation. USENIX, (2022), 1–15; https://www.
usenix.org/conference/osdi22/presentation/flinn

17.	 Frachtenberg, E. et al. Thermal design in the
open compute datacenter. In Proceedings of
the 13th InterSociety Conf. on Thermal and
Thermomechanical Phenomena in Electronic
Systems. IEEE, (2012), 530–538.

18.	 Gangidi, A. et al. RDMA over Ethernet for distributed
training at Meta scale. In Proceedings of the ACM
SIGCOMM 2024 Conf. ACM, (2024), 57–70.

19.	 Grubic, B. et al. Conveyor: One-tool-fits-all
continuous software deployment at Meta. In
Proceedings of the 17th USENIX Symp. on Operating
Systems Design and Implementation. USENIX,
(2023).

20.	 Guo, M. et al. MobileConfig: Holistic configuration
management for mobile apps. In Proceedings of the
21st USENIX Symp. on Networked Systems Design
and Implementation. USENIX, (2024).

21.	 Heo, T. et al. IOCost: Block io control for containers in
datacenters. In Proceedings of the 27th ACM Intern.
Conf. on Architectural Support for Programming
Languages and Operating Systems. ACM, (2022),
595–608.

22.	 Kumar, N. et al. Optimizing resource allocation in
hyperscale datacenters: Scalability, usability, and
experiences. In Proceedings of the 18th USENIX Symp.
on Operating Systems Design and Implementation.
USENIX, (2024).

23.	 Lee, S. et al. Shard Manager: A generic shard
management framework for geodistributed

applications. In Proceedings of the 28th Symp. on
Operating Systems Principles. ACM, (2021).

24.	 Masti, S. How we built a general purpose key value
store for Facebook with ZippyDB. (2021); https://
engineering.fb.com/2021/08/06/core-data/zippydb/

25.	 Meza, J.J. et al. Defcon: Preventing overload with
graceful feature degradation. In Proceedings of the
17th USENIX Symp. on Operating Systems Design and
Implementation. USENIX, (2023), 607–622.

26.	 Newell, A. et al. RAS: Continuously optimized region-
wide datacenter resource allocation. In Proceedings
of the 28th Symp. on Operating Systems Principles.
ACM, (2021).

27.	 Nishtala, R. et al. Scaling Memcache at Facebook. In
Proceedings of the 10th USENIX Symp. on Networked
Systems Design and Implementation. USENIX,
(2013), 385–398.

28.	 Open Compute Project. (2024); https://www.
opencompute.org/

29.	 Pan, S. Facebook’s Tectonic filesystem: Efficiency from
exascale. In Proceedings of the 19th USENIX Conf.
on File and Storage Technologies. USENIX, (2021),
217–231.

30.	 Sahraei, A. et al. XFaaS: Hyperscale and low cost
serverless functions at Meta. In Proceedings of the
29th Symp. on Operating Systems Principles. ACM,
(2023), 231–246.

31.	 Saokar, H. et al. ServiceRouter: A scalable and
minimal cost service mesh. In Proceedings of the
17th USENIX Symp. on Operating Systems Design and
Implementation. USENIX, (2023).

32.	 Schlinker, B. et al. Engineering egress with Edge
Fabric: Steering oceans of content to the world. In
Proceedings of the Conf. of the ACM Special Interest
Group on Data Communication. ACM, (2017), 418–431.

33.	 Tang, C. et al. Holistic configuration management
at Facebook. In Proceedings of the 25th Symp. on
Operating Systems Principles. ACM, (2015), 328–343.

34.	 Tang, C. et al. Twine: A unified cluster management
system for shared infrastructure. In Proceedings of
the 14th USENIX Symp. on Operating Systems Design
and Implementation. USENIX, (2020), 787–803.

35.	 Veeraraghavan, K. et al. Kraken: Leveraging live
traffic tests to identify and resolve resource
utilization bottlenecks in large scale web services. In
Proceedings of the 12th USENIX Symp. on Operating
Systems Design and Implementation. USENIX,
(2016), 635–651.

36.	 Veeraraghavan, K. et al. Maelstrom: Mitigating
datacenter-level disasters by draining interdependent
traffic safely and efficiently. In Proceedings of the
13th USENIX Symp. on Operating Systems Design and
Implementation. USENIX, (2018), 373–389.

37.	 Weiner, J. et al. TMO: Transparent memory offloading
in datacenters. In Proceedings of the 27th ACM Intern.
Conf. on Architectural Support for Programming
Languages and Operating Systems. ACM, (2022),
609–621.

38.	 Wu, Q. et al. Dynamo: Facebook’s data center-
wide power management system. ACM SIGARCH
Computer Architecture News 44, 3 (2016), 469–480.

39.	 Yoon, D.Y. et al. FBDetect: Catching tiny performance
regressions at hyperscale through in-production
monitoring. In Proceedings of the 30th Symp. on
Operating Systems Principles. ACM, (2024).

40.	Yu, K. and Kumar, R. Viewing the world as a computer:
Global capacity management. Engineering at Meta,
(2022); https://engineering.fb.com/2022/09/06/data-
center-engineering/viewing-the-world-as-a-computer-
global-capacity-management/

Chunqiang Tang is a research scientist and senior
director at Meta, formerly known as Facebook. His
research interests include AI accelerators, machine
learning, high-performance computing, and cloud
computing. Prior to joining Facebook, he was a research
staff member and manager at the IBM T.J. Watson
Research Center.

© 2025 Copyright held by the owner/author(s).
Publication rights licensed to ACM.

Watch the author discuss
this work in the exclusive
Communications video.
https://cacm.acm.org/videos/
metas-hyperscale

FEBRUARY 2025 | VOL. 68 | NO. 2 | COMMUNICATIONS OF THE ACM 63

research and advances

