
Kubernetes and PyTorch originated in 
Google and Facebook, respectively, but 
have been adopted by organizations of 
all sizes. In addition to these specific 
technologies, the principles and les-
sons from hyperscale infrastructure 
may assist practitioners in building 
better systems in general.

This article provides a high-level 
overview of Meta’s hyperscale infra-
structure, focusing on key insights 
from its development, particularly 
in systems software. Where relevant, 
we highlight differences from public 
clouds, as varying constraints have 
led to distinct optimizations. Though 
much of the knowledge presented here 
has been shared and practiced within 
the industry and research community, 
including insights from our past publi-
cations, the article’s primary contribu-
tion is to provide a holistic perspective 
that helps readers build a comprehen-
sive mental model of hyperscale infra-
structure end to end.

Engineering Culture
Before delving into the details of Me-
ta’s infrastructure, we first highlight 
several aspects of the company’s en-
gineering culture, because an organi-
zation’s culture heavily influences its 
technology.

Move fast. Since its inception, Face-

H Y PER SC A L ER S ,  SUCH A S Alibaba, Amazon, ByteDance, 
Google, Meta, Microsoft, and Tencent, have developed 
planetary-scale infrastructure to deliver cloud, Web, or 
mobile services to their global users. And though most 
practitioners may not directly build such hyperscale 
infrastructure, we believe it is beneficial to learn a bit 
about it. Historically, many widely used technologies 
have originated from advanced environments, 
including mainframes in the 1960s and hyperscale 
infrastructures in the past two decades. For instance, 
virtual memory had its origin in mainframes and is 
now common even in smartwatches. Similarly, 
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 key insights
	˽ Meta’s engineering culture emphasizes 

moving fast, technology openness, 
research in production, and shared 
infrastructure.

	˽ To boost developer productivity, Meta 
has adopted continuous deployment 
universally and enabled more developers 
to write serverless functions rather than 
traditional service code.

	˽ To reduce hardware costs, Meta utilizes 
hardware-software co-design at the 
datacenter scale and autonomously 
optimizes resource allocations, including 
workload migration, across global 
datacenters instead of limiting them to 
individual clusters.

	˽ Meta’s AI strategy involves co-designing 
the entire stack, from PyTorch to AI 
accelerators, networks, and ML models 
such as Llama.



book has ingrained and retained the 
“move-fast” culture, emphasizing agil-
ity and rapid iteration. This philosophy 
is evident in its strong commitment 
to continuous software deployment, 
which involves releasing the latest 
code into production as early as pos-
sible. Additionally, product engineers 
predominantly write code in stateless, 
serverless functions in PHP, Python, 
and Erlang for their benefits in simplic-
ity, productivity, and iteration speed. 
Teams have the ability to quickly pivot 
their execution priorities without un-
dergoing a lengthy replanning pro-
cess, leaving ambiguous issues to be 
sorted out during iterative execution. 
This allows teams to quickly adapt and 
launch new products in response to 
evolving market conditions.

Technology openness. Meta cham-
pions technology openness, both in-
ternally and externally. Internally, we 
adopt the monorepo approach, stor-
ing the code for all projects in a single 
repository to facilitate code discovery 
and reuse, as well as cross-team con-
tributions. While other organizations 
also use monorepos, they vary in the 
degree of openness. Some require 
designated owners for each project, 
with only these owners authorized to 
accept code changes, although oth-
ers may propose changes. In contrast, 
with few exceptions, the vast majority 
of projects at Meta do not enforce such 
strict ownership rules. This openness 
encourages cross-team contributions 
and code reuse while discouraging the 
reinvention of similar technologies.

At Meta, engineers directly commit 
code changes to the mainline of the 
monorepo, and software deployments 
are compiled from the mainline, that 
is, from the latest code, as opposed to 
some stable branches. For example, 
when a widely used library, such as 
the RPC library, is updated, the next 
release of every application dependent 
on this library will be automatically 
compiled with the latest version.

Externally, Meta’s commitment to 
technology openness is demonstrated 
through its open-source hardware de-
signs via the Open Compute Project28 
and open-source software projects 
such as PyTorch, Llama, Presto, Rocks-
DB, and Cassandra. Also, much of 
Meta’s infrastructure technology has 
been shared through research papers, 

with many examples in this article’s 
references.

Research in production. Meta’s hy-
perscale infrastructure requires con-
tinuous innovation, but unlike most 
hyperscalers, the company does not 
have a dedicated systems research lab. 
Instead, all of its systems research pa-
pers are authored by teams developing 
production systems. These teams ad-
vance the state of the art while tackling 
challenging production issues at scale, 
then reflect on these experiences to 
distill working solutions into research 
papers. This approach ensures that the 
addressed problems are real and the 
solutions work at scale, aligning well 
with key criteria for successful systems 
research.

Common infrastructure. Some 
organizations empower individual 
teams to make local decisions about 
their technology stack. Meta, however,  
prioritizes standardization and global 
optimization. On the hardware side, 
servers supporting different products 
are all allocated from a shared server 
pool.34 Moreover, for non-AI compute 
workloads, we offer only a single serv-
er type, equipped with one CPU and 
the same amount of DRAM (previ-
ously 64GB, now 256GB). Unlike pub-
lic clouds, which must provide various 
server types to accommodate diverse 
customer applications, Meta can opti-
mize its applications to suit the hard-
ware, thereby avoiding the prolifera-
tion of server types.

Standardization also prevails on 
the software side. For instance, dif-
ferent Meta products previously used 
Cassandra, HBase, and ZippyDB24 
for key-value stores, but now all have 
converged to ZippyDB. Further, each 
common capability—such as software 
deployment,19 configuration manage-
ment,33 service mesh,31 pre-production 
performance testing,11 in-production 
performance monitoring,39 and in-pro-
duction load testing35—is supported 
by a universally adopted tool.

Besides standardization, a key 
principle in achieving common in-
frastructure is our preference for re-
usable components over monolithic 
solutions. A good example of this is 
the component-reuse chain in our dis-
tributed file system, Tectonic.29 Tec-
tonic enhances scalability by using a 
distributed key-value store, ZippyDB,24 

Unlike public 
clouds, which must 
provide various 
server types to 
accommodate 
diverse customer 
applications, Meta 
can optimize its 
applications to 
suit the hardware, 
thereby avoiding 
the proliferation of 
server types. 
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ment. In terms of external technology 
openness, Threads aims to integrate 
with ActivityPub, the open social net-
working protocol, for interoperability 
with other apps. We have also publicly 
shared our experiences of rapidly de-
veloping Threads.6

Insight 1: 
Despite many challenges, it is feasible 
for a large organization to maintain 
a culture of moving fast, using a com-
mon infrastructure, and sharing a 
monorepo without strictly enforcing 
code ownership.

End-to-End User Request Flow
We now dive into Meta’s infrastructure 
technology. Meta products are sup-
ported by a shared service infrastruc-
ture. To provide a holistic view of this 
infrastructure, we explain how a user 
request is processed end-to-end, de-
tailing all the components involved.

Request routing.  Dynamic DNS map-
ping. When a user initiates a request to 
facebook.com, Meta’s DNS server dy-
namically returns an IP address that 
is mapped to a Meta-operated small 
edge datacenter, known as point of 
presence (PoP), as depicted in Figure 
1. This dynamic DNS mapping ensures 
that the chosen PoP is close to the user, 
while balancing load across PoPs. The 
user’s TCP connection is terminated 
at the PoP, which maintains separate, 
long-lived TCP connections with Me-
ta’s datacenters. This split-TCP setup 
offers several advantages, including 
reduced TCP-establishment latency 
through the reuse of pre-established 
connections between PoPs and data-

to store its metadata. ZippyDB further 
employs a common sharding frame-
work, Shard Manager, to manage its 
data shards; Shard Manager, in turn, 
depends on Meta’s mesh, ServiceRout-
er,31 for shard discovery and request 
routing. Finally, ServiceRouter stores 
the service discovery and configura-
tion data of the entire infrastructure, 
which is critical for the site’s con-
tinuous operation, in the highly reli-
able, zero-dependency data store De-
los.3 Therefore, the component-reuse 
chain is Tectonic→ZippyDB→Shard 
Manager→ServiceRouter→Delos. All of 
these reusable components also serve 
many other use cases. In contrast, 
HDFS, a popular open source distrib-
uted file system, is a monolithic system 
that implements all of these compo-
nents internally.

Culture case study: The Threads 
app. The development of the Threads 
app,6 often compared to Twitter/X, ex-
emplifies the aforementioned culture. 
Emphasizing moving fast, a small 
team developed Threads with just five 
months of technical work in a start-
up-like environment. Moreover, once 
it was developed, the infrastructure 
teams were given only two day’s notice 
to prepare for its production launch. 
Most large organizations would take 
longer than two days just to draft a proj-
ect plan involving dozens of interde-
pendent teams, let alone execute it. At 
Meta, however, we quickly established 
war rooms across distributed sites, 
bringing together both infrastructure 
and product teams to address issues in 
real time. Despite the tight timeline, 
the app’s launch was highly successful, 
reaching 100 million users within just 
five days, making it the fastest-growing 
app in history.6

Common infrastructure was cru-
cial for enabling teams to swiftly im-
plement Threads and scale it reliably. 
Threads reused Instagram’s Python 
backend as well as Meta’s shared in-
frastructure components, such as 
the social-graph database,5 key-value 
store,24 serverless platform,30 machine-
learning (ML) training and inference 
platforms,10 and configuration-man-
agement framework for mobile apps.20

Meta’s internal technology open-
ness, using a monorepo, allowed 
Threads to reuse some Instagram ap-
plication code to accelerate its develop-

centers. A PoP typically has hundreds 
of servers but may have up to a few 
thousand. Hundreds of PoPs are posi-
tioned worldwide to ensure that most 
users have a PoP close to them, thereby 
ensuring short network latencies.

Static-content caching. If the user 
request is for static content, such as 
images and videos, it can be directly 
served at the PoP if the content is al-
ready cached there. Additionally, static 
content may be cached by the content 
delivery network (CDN), as shown in 
Figure 1. When a significant volume of 
Meta product traffic originates from 
an Internet service provider’s (ISP’s) 
network, Meta seeks to establish a mu-
tually beneficial partnership by pro-
viding Meta Network Appliances to be 
hosted in the ISP’s network to cache 
static content, thereby forming a CDN 
site. A CDN site typically has tens of 
servers, with some having more than 
a hundred. Thousands of CDN sites 
across the globe form our CDN for dis-
tributing static content.

Meta products use URL rewrites to 
redirect user requests to a nearby CDN 
site. When a Meta product provides a 
URL for a user to access static content, 
it rewrites the URL, for example, from 
facebook.com/image.jpg to CDN109.
meta.com/image.jpg. If the image is 
not cached at CDN109 when the user re-
quests it, CDN109 forwards the request 
to a nearby PoP. The PoP then forwards 
the request to the load balancer in a 
datacenter region, which retrieves the 
image from the storage system. On the 
return path, both the PoP and the CDN 
site cache the image for future use.

Dynamic-content request routing. If 

Figure 1. Meta’s global infrastructure.
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Edge network. A PoP is connected 
to multiple autonomous systems on 
the Internet and typically has multiple 
paths to reach a user network. When 
choosing a path between a PoP and a 
user, Border Gateway Protocol (BGP), 
by default, does not consider network 
capacity and performance. The PoP’s 
network, however, takes these factors 
into consideration and advertises its 
preferred route to a network prefix.32

Datacenter network. Servers in a 
datacenter are interconnected by a 
datacenter fabric,2 where network 
switches form a three-level Clos topol-
ogy that can be scaled incrementally 
by adding more switches at the top 
level. With a sufficient number of top-
level switches, the fabric can provide a 
non-blocking and non-oversubscribed 
network, enabling communication be-
tween any two servers at their full NIC 
bandwidth. We are moving toward 
eliminating network oversubscription 
within a datacenter.

Regional network. A fabric aggrega-
tor14 connects datacenters within a 
region and further connects them to 
our private WAN. The fabric aggrega-
tor employs a topology akin to the fat 
tree, enabling the incremental addi-
tion of more switches to boost band-
width. We aim to significantly reduce 
network oversubscription in a region 
so that cross-datacenter communi-

Insight 2: 
Meta’s global infrastructure consists 
of CDN sites, edge datacenters, and 
main datacenters. Because of the high 
volume of our internal cross-datacen-
ter traffic, we have built a private WAN 
to connect our datacenters, rather 
than relying on the public Internet.

Infrastructure topology. The table  
summarizes the aforementioned in-
frastructure components. Globally, 
there are tens of datacenter regions, 
hundreds of edge datacenters (PoPs), 
and thousands of CDN sites. Each 
datacenter region has multiple data-
centers located within the radius of 
a few miles. Each datacenter uses up 
to a dozen main switchboards (MSBs) 
for power distribution, which also act 
as the primary sub-datacenter fault 
domains. An MSB failure can render 
10 to 20 thousand servers unavail-
able.

the user request is for dynamic content 
such as a newsfeed, the PoP forwards 
it to a datacenter region. The selection 
of the target region is guided by a traf-
fic-engineering tool9 that periodically 
computes the optimal distribution of 
global traffic from PoPs to datacenters, 
considering factors such as datacenter 
capacity and network latency.

PoP-to-datacenter traffic travels 
through Meta’s private wide-area net-
work (WAN),12 which globally inter-
connects Meta’s PoPs and datacenters 
using optical fibers spanning tens of 
thousands of miles. Internal network 
traffic among our datacenters and 
PoPs significantly surpasses external-
facing traffic between users and PoPs 
by several orders of magnitude, pri-
marily due to data replication across 
datacenters and interactions among 
our microservices. The private WAN 
provides high bandwidth to serve this 
internal traffic.

Table. Number and size of infrastructure components.

Entity type Entity count Servers in each entity

Region O(10) Up to one million

PoP O(100) Typically O(100) but up to O(1,000)

CDN site O(1,000) Typically O(10) but up to 100+

Datacenter Multiple datacenters per region O(100,000)

MSB Up to a dozen MSBs per datacenter Typically 10K to 20K

Figure 2. High-level architecture of software components running in a datacenter region. This is a highly simplified diagram, as Meta 
internally has O(10,000) backend services that exhibit a complex call graph.
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“batch analytics,” powered by Spark 
and Presto, can periodically perform 
operations such as updating friend 
recommendations in response to new 
activities on the site. Finally, data up-
dates in the data warehouse serve as a 
primary event source that triggers the 
execution of event-driven serverless 
functions.30

Insight 3: 
Using a data warehouse as an in-
termediate layer to decouple online 
and offline processing simplifies the 
architecture and enables independent 
optimizations.

Boosting Developer Productivity
A main purpose of a shared infrastruc-
ture is to boost developer productiv-
ity. While it is widely recognized that 
continuous software deployment and 
serverless functions can help make de-
velopers more productive, we have tak-
en these approaches to the extreme.

Continuous deployment. Aligning 
with the move-fast culture, we take 
continuous deployment of both code 
and configuration to extreme speeds 
and scales, enabling developers to 
quickly release new features and bug 
fixes, receive immediate feedback, and 
iterate rapidly.

For configuration changes, our con-
figuration-management tool33 deploys 
more than 100,000 live changes daily 
in production, spanning O(10,000) 
services and millions of servers. These 
changes facilitate a variety of tasks, in-
cluding load balancing,9,31 feature roll-
outs, A/B tests, and overload protec-
tion.25 At Meta, nearly every engineer 
who writes code also makes live con-
figuration changes in production. Fol-
lowing the configuration-as-code para-
digm, manual configuration changes 
undergo peer code review before being 
committed to a code repository. Once 
committed, these changes immedi-
ately enter the continuous deployment 
pipeline. Within seconds, the updated 
configuration can be pushed to po-
tentially millions of subscribed Linux 
processes, triggering an upcall notifi-
cation. The processes can immediately 
adjust their runtime behavior without 
restarts. In addition to manual chang-
es, automation tools also drive config-
uration changes, for example, for load 
balancing.9,31

cation within a region is not a bottle-
neck. This allows most services, except 
for ML training, to be scattered across 
datacenters in a region without worry-
ing about a significant performance 
penalty.

Request processing. Online process-
ing. When a user request reaches a 
datacenter region, it is processed along 
the path depicted in Figure 2. The load 
balancer spreads user requests across 
tens of thousands of servers that ex-
ecute “frontend serverless functions.” 
To process a user request, a frontend 
serverless function may invoke many 
backend services, some of which may 
further call “ML inference,” for exam-
ple, to retrieve recommendations for 
ads or newsfeed content.

During its execution, a frontend 
serverless function can enqueue 
events in the “event queue” for “event-
driven serverless functions”30 to pro-
cess asynchronously. One such event 
could be sending a confirmation 
email after the user performs an ac-
tion on the site. While frontend server-
less functions directly affect user-per-
ceived response time and hence have 
a tight latency service-level objective 
(SLO), event-driven serverless func-
tions work asynchronously without af-
fecting user-perceived response time, 
and are optimized for throughput 
and hardware utilization instead of 
latency. The ratio of servers executing 
frontend serverless functions to event-
driven serverless functions is approxi-
mately 5:1.

Offline processing. The components 
on the right side of Figure 2 perform 
various offline processing to assist 
online processing on the left side. De-
coupling online and offline process-
ing enables independent optimization 
based on their respective workload 
characteristics. When handling user 
requests, frontend serverless func-
tions and backend services log various 
types of data, such as ad-click-through 
or video-watch metrics, into the “data 
warehouse.” This data feeds various 
offline processing. For instance, “ML 
training”10 uses the data to update 
ML models, while “stream process-
ing” can use the data to update the 
most-discussed topics on the site and 
store them in “databases and caches,” 
which are then used during online 
user-request processing. Additionally, 

Aligning with the 
move-fast culture, 
we take continuous 
deployment of 
both code and 
configuration to 
extreme speeds and 
scales, enabling 
developers to 
quickly release 
new features 
and bug fixes, 
receive immediate 
feedback, and 
iterate rapidly. 
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worthwhile, as it significantly boosts 
developer productivity.

Insight 4: 
Even for a large organization with 
O(10,000) services, it is feasible to 
adopt continuous deployment at ex-
treme scales and speeds. Specifically, 
97% of our services adopt fully auto-
mated deployments without manual 
intervention, and 55% deploy every 
code change instantly.

Serverless functions. The wide-
spread use of serverless functions 
(also known as function-as-a-service 
or FaaS) is another key driver that 
boosts developer productivity. Unlike 
traditional backend services, which 
can exhibit arbitrary complexity, FaaS 
is stateless and implements a simple 
function interface.30 Each FaaS in-
vocation is managed independently, 
with no side effects on other con-
current invocations, except through 
states stored in external databases. 
Due to its stateless nature, FaaS re-
lies heavily on external caching sys-
tems5,27 to achieve good performance 
when accessing databases.

Developers write FaaS code and 
leave it to the infrastructure to handle 
everything else through automation, 
including code deployment and auto-
scaling in response to load changes. 
This simplicity allows Meta’s more 
than 10,000 product developers to fo-
cus solely on product logic without 
concern for infrastructure manage-
ment. Moreover, it prevents hardware 
waste caused by product developers 
over-provisioning resources.

Meta takes the usage of FaaS to the 
extreme to maximize developer pro-
ductivity. Among O(10,000) engineers 
at Meta, the number of engineers 
writing FaaS code is about 50% great-
er than those writing code for regular 
services that they operate by them-
selves. This success is attributed not 
only to relieving product engineers of 
managing infrastructure but also to 
the usability of the integrated devel-
opment environment (IDE) for FaaS. 
This IDE enables easy access to the 
social-graph database5 and various 
backend systems through high-level 
language constructs. It also provides 
fast feedback through continuous in-
tegration tests.

For code changes, our deployment 
tool19 manages more than 30,000 pipe-
lines to deploy software upgrades. At 
Meta, 97% of services adopt fully auto-
mated software deployments without 
any manual intervention: 55% utilize 
continuous deployment, instantly 
deploying every code change to pro-
duction after passing automated 
tests, while the remaining 42% are 
automatically deployed on a fixed 
schedule, mostly daily or weekly. Take 
the frontend serverless functions in 
Figure 2 as an example. They run on 
more than half a million servers, with 
more than 10,000 product developers 
changing their code and thousands of 
code commits every workday. Despite 
this extremely dynamic environment, 
a new version of all serverless func-
tions is released into production every 
three hours.

Even our network software is de-
signed like regular services and op-
timized for frequent updates. For ex-
ample, our private WAN12 divides its 
network topology into multiple paral-
lel planes, each responsible for a por-
tion of the traffic and equipped with 
its own controller. This enables fre-
quent updates of the controller soft-
ware. Developers can experiment with 
new control algorithms by diverting 
traffic from one plane and deploying 
the new algorithm exclusively within 
that plane, without affecting other 
planes. Similarly, our network switch 
software8 undergoes frequent updates, 
just like standard services. Leveraging 
the switch ASIC’s “warm boot” feature, 
the data plane keeps forwarding traffic 
while the switch software undergoes 
an update.

Frequent code and configuration 
updates enable agile software devel-
opment but increase the risk of site 
outages. To address this risk, we invest 
heavily in testing, staged rollouts, and 
health checks during updates.19,33 Pre-
viously, we launched a company-wide 
campaign to boost code-deployment 
automation, increasing the adoption 
of fully automated code deployment 
guarded by health checks from 12% 
to 97%. Similarly, we implemented 
another initiative to ensure that all 
configuration changes undergo auto-
mated canary tests to uphold configu-
ration safety. Overall, we find these in-
vestments in continuous deployment 

Developers write 
FaaS code and 
leave it to the 
infrastructure to 
handle everything 
else through 
automation, 
including code 
deployment and 
auto-scaling in 
response to load 
changes. 
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size may dynamically grow or shrink. 
During runtime, our container-man-
agement tool34 allocates containers 
in these virtual clusters, often spread-
ing a job’s containers across multiple 
datacenters in the same region for im-
proved fault tolerance. Finally, at the 
server level, our kernel mechanisms21,37 
ensure proper sharing and isolation of 
memory and I/O resources allocated to 
individual containers.

Stateful services, such as databas-
es, benefit from Global-DaaC. These 
services are typically sharded, with 
each container hosting multiple data 
shards for efficiency. Our global ser-
vice placer (GSP) uses constrained op-
timization to determine the optimal 
number of replicas for each data shard 
and their placement across regions. 
Then, our sharding framework23 works 
within the constraints set by GSP to al-
locate shard replicas to containers and 
dynamically migrate them in response 
to load changes.

Similarly, ML workloads benefit 
from Global-DaaC. For ML inference, 
models are managed similarly to data 
shards, with the number of model rep-
licas and their locations determined 
by GSP. For ML training, it requires 
the collocation of training data and 
GPUs in the same datacenter region. 
Each team receives a global GPU ca-
pacity quota and submits training jobs 
to a global job queue. Our ML train-
ing scheduler10 automatically selects 
regions for data replication and GPU 
allocation to ensure the colocation of 
data and GPUs while maximizing GPU 
utilization.

Insight 6: 
Meta is evolving from the practice of 
“the datacenter as a computer”4 to 
the vision of “all global datacenters 
as a computer.”40 In this model, the 
infrastructure autonomously deter-
mines and migrates deployments 
across global datacenters in response 
to workload changes, eliminating 
the need for user involvement. We 
have successfully demonstrated this 
approach for databases, ML systems, 
and diverse services operating at 
the scale of O(100,000) servers and 
O(100,000) GPUs.

Hardware and software co-design. 
While hardware and software co-de-

ity, another main purpose of a shared 
infrastructure is to lower the cost of 
hardware. In this section, we highlight 
several examples of how software solu-
tions help reduce hardware costs.

All global datacenters as a com-
puter. Most infrastructures place the 
burden of managing the complexities 
of geo-distributed datacenters on us-
ers, requiring them to manually deter-
mine the number of replicas for their 
services and select the regions for 
deployment, all while ensuring that 
service-level objectives are met. This 
complexity often leads to hardware 
wastage due to overprovisioning, un-
even load distribution across regions, 
and insufficient cross-region migra-
tion to adapt to changes in workload 
demand and datacenter supply.

In contrast, Meta is evolving from 
the practice of “the datacenter as a 
computer”4 (DaaC) to the vision of “all 
global datacenters as a computer” 
(Global-DaaC).40 With Global-DaaC, 
users simply request the global de-
ployment of a service, leaving the in-
frastructure to manage all the details: 
determining the optimal number of 
service replicas, placing these replicas 
across datacenter regions based on 
service-level objectives and available 
hardware, selecting the best-match-
ing hardware type, optimizing traffic 
routing, and continuously adapting 
service placement in response to work-
load changes. Compared with public 
clouds, Meta can more easily realize 
Global-DaaC because it owns all its ap-
plications and can move them across 
regions as needed; public clouds lack 
this flexibility with their customers’ 
applications.

To implement Global-DaaC, our 
tools seamlessly coordinate resource 
allocation across all levels: global, re-
gional, and within individual servers. 
First, our global capacity-management 
tool13 uses RPC tracing to identify ser-
vice dependencies and construct re-
source-consumption models, then em-
ploys mixed-integer programming to 
break down a service’s global capacity 
needs into regional quotas. Next, our 
regional capacity-management tool26 
assigns server resources to these re-
gional quotas to form virtual clusters. 
Unlike physical clusters, a virtual clus-
ter can comprise servers from different 
datacenters in the same region, and its 

As shown in Figure 2, Meta oper-
ates two FaaS platforms: one for fron-
tend serverless functions and another 
for event-driven serverless functions. 
We refer to them as FrontFaaS and 
XFaaS,30 respectively. FrontFaaS func-
tions are written in PHP (we also have 
FaaS platforms for Python, Erlang, and 
Haskell functions). To support the high 
load generated by billions of users, we 
maintain over half a million servers 
that keep the PHP runtime running at 
all times. When a user request arrives, 
it is routed to one of these servers for 
immediate processing, without experi-
encing cold start time. When the site’s 
load is low, we utilize auto-scaling to 
release some FrontFaaS servers for 
other services to use.

XFaaS shares many similarities 
with FrontFaaS, the key difference be-
ing that it executes non-user-facing 
functions that do not require sub-
second response times but exhibit a 
highly spiky load pattern.30 To avoid 
overprovisioning resources for peak 
loads, XFaaS employs a combination 
of optimizations to spread out func-
tion execution, including deferring the 
execution of delay-tolerant functions 
to off-peak hours, globally load-bal-
ancing function calls across regions, 
and implementing throttling based on 
quotas.

Product developers at Meta have 
been using FaaS as their primary cod-
ing paradigm since the late 2000s, even 
before the term FaaS became popular. 
Compared with serverless platforms 
in the industry, a unique aspect of our 
serverless platforms is that they allow 
multiple functions to execute concur-
rently in the same Linux process for 
higher hardware efficiency,30 unlike 
public clouds that have to execute one 
function per virtual machine in order 
to ensure stronger isolation between 
different customers.

Insight 5: 
Serverless functions have become the 
primary coding paradigm for prod-
uct development at Meta. More than 
10,000 Meta engineers write code for 
serverless functions, exceeding the 
number of engineers writing regular 
service code by 50%.

Reducing Hardware Costs
Besides boosting developer productiv-
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Though our infrastructure is de-
signed to withstand the loss of an en-
tire datacenter region without affect-
ing users, the increasing number of 
regions has raised the possibility of 
two nearby regions being simultane-
ously affected by a large-scale natural 
disaster such as a hurricane. Instead 
of over-provisioning capacity to toler-
ate the simultaneous loss of two re-
gions, we employ a software-based 
approach25 that, in the event of losing 
multiple regions, deactivates less-criti-
cal product features and gracefully de-
grades service quality, such as deliver-
ing lower-quality videos, to reduce the 
load.

Eliminating the costs of routing prox-
ies. Unlike traditional service meshes 
that predominantly use sidecar prox-
ies to route RPC requests, Meta’s ser-
vice mesh31 uses proxies to route only 
1% of RPC requests across our fleet. 
The remaining 99% use a routing li-
brary linked into service executables 
for direct client-to-server routing, by-
passing intermediate proxies. While 
this unconventional approach saves us 
O(100,000) servers needed for proxies, 
it introduces deployment challenges 
due to the library being compiled into 
around O(10,000) services, each with 
its own deployment schedule. Our 
software deployment and configura-
tion-management tools19,33 help make 
these challenges manageable.

Tiered storage and local SSDs. Based 
on access frequency and latency toler-
ance, we categorize data as hot, warm, 
or cold, with each category using a 
different storage system to optimize 
cost-effectiveness. Hot databases and 
caches, such as the social graph data-
base,5 store data in memory and solid 
state drives (SSDs).

Warm data, including videos, imag-
es, and data in the data warehouse (for 
example, user activity logs), is stored in 
a distributed file system29 that utilizes 
hard disk drives (HDDs) to store data. 
Each storage server is equipped with 
one CPU, 36 HDDs, and two SSDs for 
metadata cache.

For rarely accessed cold data, such 
as a decade-old high-resolution video, 
we archive them with high-density 
HDD servers, each with one CPU and 
216 HDDs, which provides a good bal-
ance between total cost of ownership 
and data-restoration speed. These 

sign within a single server is common, 
we have elevated it to the global scale 
to use software solutions to overcome 
the limitations of lower-cost hardware.

Low-cost fault tolerance. Public 
clouds tend to provide hardware with 
higher availability because their cus-
tomers’ applications might not be 
sufficiently fault tolerant. In contrast, 
since all our applications are under 
our control, we can ensure they are 
implemented in a fault-tolerant man-
ner to run on cheaper hardware with 
lower availability guarantees. For ex-
ample, a server rack in public clouds 
may use dual power supplies and dual 
top-of-rack (ToR) switches to ensure 
high availability and facilitate switch 
maintenance without disrupting run-
ning workloads. In contrast, our racks 
have neither dual power supplies nor 
dual ToR switches. Instead, hardware 
redundancies occur only at the much 
larger scope of the power main switch-
boards (MSBs), each covering about 
10,000 to 20,000 servers. For every six 
MSBs, there is only one reserve MSB as 
a backup. Moreover, virtual machines 
(VMs) in public clouds often use net-
work-attached block devices, which 
enable live VM migration. In contrast, 
our containers use low-cost, directly 
attached SSDs for root disks, which 
hinders live-container migration dur-
ing datacenter maintenance opera-
tions.

We use software solutions to over-
come the limitations of lower-cost 
hardware. First, our resource-alloca-
tion tools23,26,34 ensure that a service’s 
containers and data shards are suf-
ficiently spread across different sub-
datacenter fault domains (MSBs) for 
better fault tolerance. Second, through 
a cooperative protocol that allows a 
service to weigh in on the lifecycle 
management of its containers,19 we 
ensure that maintenance operations 
respect application-level constraints, 
such as avoiding simultaneous shut-
downs of two replicas of the same 
data shard. Finally, Global-DaaC en-
sures that services are deployed to 
withstand the simultaneous loss of an 
entire datacenter region, one MSB in 
each region, and a certain percentage 
of random servers in each region. We 
routinely conduct tests in production 
to ensure that these properties hold so 
our services are fault tolerant.36

Global-DaaC 
ensures that 
services are 
deployed to 
withstand the 
simultaneous 
loss of an entire 
datacenter region, 
one MSB in each 
region, and a certain 
percentage of 
random servers in 
each region. 
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work resource usage and faster conver-
gence during network failures.

For key-value stores, DHTs use 
multi-hop routing to determine the 
server responsible for a given key, 
while Cassandra uses consistent hash-
ing for this purpose. Both function 
without a central controller. In con-
trast, to achieve better load balance, 
our sharding framework23 uses a cen-
tral controller to dynamically reassign 
key-encapsulating shards to servers.

For bulk-data distribution, we tran-
sitioned from BitTorrent to Owl,16 
which centralizes the decision of where 
a peer should fetch data, resulting in 
significantly faster download speeds. 
Note that both Owl and our private 
WAN12 centralize the control plane for 
better decision making but still use a 
decentralized data plane for actual 
data forwarding or downloading.

For small-metadata distribution 
(further explained in Figure 4), we ini-
tially used a three-level distribution 
tree implemented in Java. The tree’s 
intermediate nodes were dedicated 
proxy servers, and its leaf nodes were 
application subscribers that could dy-
namically join and leave. When this 
implementation could not scale fur-
ther, we transitioned to a peer-to-peer 
distribution tree, where intermediate 
nodes were also application subscrib-
ers that forwarded data to other sub-
scribers. Among millions of applica-
tion subscribers, however, a subset 
often experienced noisy performance 
issues due to their non-dedicated na-
ture. Consequently, using them as in-
termediate nodes to forward traffic 
was less reliable, leading to frequent 
and time-consuming debugging. 
Eventually, after a few years of pro-
duction use, we abandoned the peer-
to-peer distribution tree and reverted 
to the original architecture that uses 
dedicated proxy servers. We replaced 

of network switches and their com-
panion software8 enables us to treat 
switch software like a regular service 
and deploy updates frequently. Most of 
our hardware designs are open source 
through the Open Compute Project.28

Insight 8:
To reduce hardware costs and power 
consumption, Meta designs its own 
datacenters, servers, racks, and 
network switches, and shares these 
designs through open source.

Designing Scalable Systems
A recurring theme in hyperscale infra-
structure is the design of scalable sys-
tems. Decentralized systems designed 
for the Internet environment, such as 
BGP, BitTorrent, and distributed hash 
tables (DHTs), are often lauded for 
their scalability. However, in a datacen-
ter environment, which is less resource 
constrained and under the control of a 
single organization, our experiences 
indicate that centralized controllers 
not only achieve ample scalability but 
also are simpler and can make higher-
quality decisions.

Deprecating decentralized control-
lers. In this section, we discuss several 
examples of the trade-off between cen-
tralized and decentralized controllers. 
For network switches in our datacenter 
fabric, although they still use BGP for 
compatibility, the fabric has a central-
ized controller capable of overriding 
routing paths during network conges-
tion or link failures.1

Except for BGP, we have migrated 
almost all decentralized controllers to 
centralized ones. For example, in our 
private WAN,12 we transitioned from 
decentralized RSVP-TE to a centralized 
controller to compute preferred traffic 
paths and proactively establish backup 
paths for common failure scenarios. 
This has resulted in more efficient net-

HDDs are powered off most of the 
time, as they are not in active use.

Among workloads that store data 
on SSDs, some can tolerate longer-tail 
latencies and opt for SSD-based shared 
remote storage for better SSD utiliza-
tion. However, workloads with strict 
latency requirements still use directly 
attached local SSDs. Compared with 
other hyperscale infrastructures, we 
more frequently employ local SSDs 
to reduce costs, despite the manage-
ment complexities involved. For in-
stance, imbalanced load distribution 
can lead to the underutilization and 
stranding of local SSDs. Additionally, 
failure recovery is complicated by data 
becoming trapped in the SSDs of failed 
servers. To address these challenges, 
we use our common sharding frame-
work23 to implement stateful services 
with local SSDs, solving the issues 
once and reusing the solution across 
many services.

Insight 7: 
To reduce hardware costs, we use soft-
ware solutions to overcome the limita-
tions of lower-cost hardware. Although 
this approach adds complexity to the 
software stack, we consider the trade-
off worthwhile due to the significant 
cost savings.

In-house hardware design. We de-
sign our own datacenters17 and hard-
ware—servers, network switches, 
video accelerators, and AI chips15—for 
better costs and power efficiency. In 
datacenters, power is the most con-
strained resource because it is fixed 
at the time of datacenter construc-
tion and hard to expand later during 
a datacenter’s 20-to-30-year lifespan. 
In contrast, the network and servers 
can be upgraded as needed. Power in 
a datacenter is often oversubscribed. 
To prevent over-drawing power when 
workloads surge, an automation tool38 
coordinates power-capping actions 
across the power-delivery hierarchy.

Our hardware designs often achieve 
cost and power savings through hard-
ware/software co-design (for example, 
optimizing SRAM usage in our AI 
chip based on our workloads15), and 
by removing components unneces-
sary to us (for example, eliminating 
compressor-cooled air conditioning17). 
Additionally, in-house development 

Figure 3. Sidecar-proxy-based service mesh.
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of the control plane. Heterogeneous L7 
routers are supported, which can be 
load balancers, services with embed-
ded routing libraries, or sidecar proxies.

As ServiceRouter shows, we can 
achieve good scalability with central-
ized controllers through techniques 
like stateless controllers, controller 
sharding, and removing non-essential 
functions, such as managing individu-
al L7 routers, from central controllers.

Future Directions
Despite the complexity of Meta’s hy-
perscale infrastructure, here we pro-
vided a concise, high-level overview, 
emphasizing key insights from its de-
velopment. To conclude, we share our 
thoughts on potential future trends for 
hyperscale infrastructure.

AI. AI workloads have become the 
single largest category of workload in 
datacenters. We anticipate that, before 
the end of this decade, more than half 
of the power in datacenters will be dedi-
cated to AI workloads. Due to its distinct 
characteristics, such as being more 
resource-intensive and requiring high-
er-bandwidth networks, AI is expected 
to profoundly reshape every aspect of 
infrastructure. In the past two decades, 
hyperscale infrastructures have suc-
ceeded mostly by taking the scaling-out 
approach to utilize a large number of 
low-cost commodity servers. Future AI 
clusters, however, will more likely take 
the scale-up approach used by past su-
percomputers, such as using remote 
direct memory access (RDMA) over Eth-
ernet to provide the high-bandwidth, 
low-latency network required for large-
scale ML training.18 Meta’s approach to 
AI is distinguished by co-designing the 
full stack, from PyTorch to ML models, 
AI chips, networks, datacenters, serv-
ers, storage, power, and cooling.

Domain-specific hardware. Revers-
ing the trend of diminishing hardware 
diversity in the 2000s, we anticipate a 
proliferation of custom and specialized 
hardware for various purposes, such 
as AI training and inference, virtual-
ization, video encoding, encryption, 
compression, tiered memory, as well as 
in-network and in-storage processing. 
This is because economies of scale al-
low hyperscalers to design and deploy 
specialized hardware in large quanti-
ties to reduce costs. Consequently, this 
will pose challenges for the software 

scalable for hyperscale infrastructure 
because the central controller cannot 
scale to directly configure the routing 
tables of millions of sidecar proxies. 
The central controller has a dual func-
tion of generating global routing meta-
data and managing each L7 router. To 
scale out, we keep the former in the cen-
tral controller but transfer the latter to 
L7 routers, making each L7 router self-
configuring and self-managing.

Figure 4 illustrates the scalable ar-
chitecture of ServiceRouter. At the top, 
different controllers independently 
execute distinct functions such as reg-
istering services, updating measured 
network latencies, and computing a 
per-service cross-region routing table. 
Each controller independently updates 
the central routing information base 
(RIB) and is not concerned with config-
uring or managing individual L7 rout-
ers. The RIB is a Paxos-based database3 
and can scale out through sharding. 
With the help of the RIB, the control-
lers become stateless and can easily 
scale out through sharding as well. For 
example, multiple controller instances 
can concurrently compute cross-region 
routing tables for different services.

In the middle of Figure 4, the distri-
bution layer leverages thousands of RIB 
replicas to handle read traffic from mil-
lions of L7 routers. At the bottom, guid-
ed by the RIB, each L7 router self-con-
figures without the direct involvement 

the original Java implementation with 
a more performant C++ implementa-
tion, which scaled well to tens of mil-
lions of subscribers.

Insight 9:
In a datacenter environment, we prefer 
centralized controllers over decen-
tralized ones due to their simplicity 
and ability to make higher-quality 
decisions. In many cases, a hybrid 
approach—a centralized control 
plane combined with a decentralized 
data plane—provides the best of both 
worlds.

Case study: Scalable service mesh. 
In this section, we use Meta’s service 
mesh, ServiceRouter,31 as a case study 
to illustrate the design of scalable sys-
tems and demonstrate that central-
ized controllers combined with a de-
centralized data plane can scale well 
in a datacenter environment. ServiceR-
outer routes billions of RPCs per sec-
ond across millions of layer-7 (L7, that 
is, application layer) routers.

Figure 3 depicts a commonly used 
service mesh in the industry, where 
each service process is accompanied by 
an L7 sidecar proxy that routes RPCs for 
the service. For example, when service 
A on server 1 sends requests to service 
B, the proxy on server 1 load balances 
them across servers 2, 3, and 4. While 
this solution is widely adopted, it is not 

Figure 4. ServiceRouter’s scalable service-mesh architecture.
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stack in utilizing and managing a high-
ly heterogeneous fleet.

Edge datacenters. We expect a sub-
stantial increase in metaverse and Inter-
net of Things (IoT) applications. Cloud 
gaming, for instance, shifts graphics 
rendering from user devices to GPU 
servers in edge datacenters, necessitat-
ing less than 25ms network latency. The 
demand for real-time responsiveness 
will likely drive considerable growth in 
both the quantity and size of edge data-
centers. As a result, the infrastructure 
control plane needs to adapt to manag-
ing a more dispersed fleet, ideally by en-
hancing Global-DaaC to shield applica-
tion developers from the complexity of 
a dispersed infrastructure.

Developer productivity. Over the 
past two decades, automation tools 
have significantly boosted the produc-
tivity of system administrators, result-
ing in a considerably higher server-
to-administrator ratio. In contrast, 
general software development remains 
labor-intensive, with comparatively 
slower productivity growth. In this de-
cade, we anticipate a shift in this trend, 
with developer productivity increasing 
rapidly for two reasons: AI-powered 
code generation and debugging, and 
fully integrated serverless program-
ming paradigms in vertical domains. 
Meta’s FrontFaaS is an example of the 
latter, and we predict the emergence of 
highly productive programming para-
digms for more vertical domains.

We anticipate that the rapid innova-
tion in hyperscale infrastructure seen 
over the past two decades will continue 
into the next decade, driven especially 
by advancements in AI. We encourage 
hyperscalers to share their insights, 
enabling the community to collectively 
accelerate progress.

Acknowledgments
This article summarizes the work done 
by thousands of Meta infrastructure 
engineers over a time span of more 
than a decade. While the author con-
tributed to some systems described 
in this article,7,10,11,13,19–24,26,30,31,33,34,37,39,40 
there are also many systems that the 
author did not work on directly. 

References
1.	 Abhashkumar, A. et al. Running BGP in data centers 

at scale. In Proceedings of the 18th USENIX Symp. 
on Networked Systems Design and Implementation. 
USENIX, (2021), 65–81.

2.	 Andreyev, A. Introducing data center fabric, the 
next-generation Facebook data center network. 
Engineering at Meta, (2014); https://engineering.
fb.com/production-engineering/introducing-data-
center-fabric-the-next-generation-facebook-data-
center-network/

3.	 Balakrishnan, M. et al. Virtual consensus in Delos. In 
Proceedings of the 14th USENIX Symp. on Operating 
Systems Design and Implementation. USENIX, 
(2020), 617–632.

4.	 Barroso, L.A., Hölzle, U., and Ranganathan, P. The 
Datacenter as a Computer: Designing Warehouse-
Scale Machines. Springer Nature, (2019).

5.	 Bronson, N. et al. TAO: Facebook’s distributed data 
store for the social graph. In Proceedings of the 2013 
USENIX Annual Technical Conf. USENIX, (2013), 
49–60.

6.	 Campbell, L. and Tang, C. How Meta built the 
infrastructure for Threads. Engineering at Meta, 
(2023); https://engineering.fb.com/2023/12/19/core-
infra/how-meta-built-the-infrastructure-for-threads/

7.	 Chen, G.J. et al. Realtime data processing at 
Facebook. In Proceedings of the 2016 Intern. Conf. 
on Management of Data. ACM, (6), 1087–1098.

8.	 Choi, S. et al. FBOSS: Building switch software at 
scale. In Proceedings of the 2018 Conf. of the ACM 
Special Interest Group on Data Communication. 
ACM, (2018), 342–356.

9.	 Chou, D. Tajji: Managing global user traffic for large-
scale Internet services at the edge. In Proceedings 
of the 27th Symp. on Operating Systems Principles. 
ACM, (2019), 430–446.

10.	 Choudhury, A. et al. MAST: Global Scheduling of 
ML Training across Geo-Distributed Datacenters 
at Hyper- scale. In Proceedings of the 18th 
USENIX Symp. on Operating Systems Design and 
Implementation. USENIX, (2024).

11.	 Chow, M. et al. ServiceLab: Preventing tiny 
performance regressions at hyperscale through pre-
production testing. In Proceedings of the 28th Symp. 
on Operating Systems Principles. ACM, (2024).

12.	 Denis, M. et al. EBB: Reliable and evolvable express 
backbone network in Meta. In Proceedings of the 
ACM SIGCOMM 2023 Conf. ACM, (2023), 346–359.

13.	 Eriksen, M. et al. Global capacity management with 
Flux. In Proceedings of the 17th USENIX Symp. on 
Operating Systems Design and Implementation. 
USENIX, (2023).

14.	 Ferreira, J. et al. Fabric Aggregator: A flexible 
solution to our traffic demand. Engineering at Meta, 
(2014); https://engineering.fb.com/data-center-
engineering/fabric-aggregator-a-flexible-solution-to-
our-traffic-demand/

15.	 Firoozshahian, A. et al. MTIA: First generation 
silicon targeting Meta’s recommendation systems. 
In Proceedings of the 50th Annual Intern. Symp. on 
Computer Architecture. ACM, (2023), 1–13.

16.	 Flinn, J. et al. Owl: Scale and flexibility in 
distribution of hot content. In Proceedings of the 16th 
USENIX Symp. on Operating Systems Design and 
Implementation. USENIX, (2022), 1–15; https://www.
usenix.org/conference/osdi22/presentation/flinn

17.	 Frachtenberg, E. et al. Thermal design in the 
open compute datacenter. In Proceedings of 
the 13th InterSociety Conf. on Thermal and 
Thermomechanical Phenomena in Electronic 
Systems. IEEE, (2012), 530–538.

18.	 Gangidi, A. et al. RDMA over Ethernet for distributed 
training at Meta scale. In Proceedings of the ACM 
SIGCOMM 2024 Conf. ACM, (2024), 57–70.

19.	 Grubic, B. et al. Conveyor: One-tool-fits-all 
continuous software deployment at Meta. In 
Proceedings of the 17th USENIX Symp. on Operating 
Systems Design and Implementation. USENIX, 
(2023).

20.	 Guo, M. et al. MobileConfig: Holistic configuration 
management for mobile apps. In Proceedings of the 
21st USENIX Symp. on Networked Systems Design 
and Implementation. USENIX, (2024).

21.	 Heo, T. et al. IOCost: Block io control for containers in 
datacenters. In Proceedings of the 27th ACM Intern. 
Conf. on Architectural Support for Programming 
Languages and Operating Systems. ACM, (2022), 
595–608.

22.	 Kumar, N. et al. Optimizing resource allocation in 
hyperscale datacenters: Scalability, usability, and 
experiences. In Proceedings of the 18th USENIX Symp. 
on Operating Systems Design and Implementation. 
USENIX, (2024).

23.	 Lee, S. et al. Shard Manager: A generic shard 
management framework for geodistributed 

applications. In Proceedings of the 28th Symp. on 
Operating Systems Principles. ACM, (2021).

24.	 Masti, S. How we built a general purpose key value 
store for Facebook with ZippyDB. (2021); https://
engineering.fb.com/2021/08/06/core-data/zippydb/

25.	 Meza, J.J. et al. Defcon: Preventing overload with 
graceful feature degradation. In Proceedings of the 
17th USENIX Symp. on Operating Systems Design and 
Implementation. USENIX, (2023), 607–622.

26.	 Newell, A. et al. RAS: Continuously optimized region-
wide datacenter resource allocation. In Proceedings 
of the 28th Symp. on Operating Systems Principles. 
ACM, (2021).

27.	 Nishtala, R. et al. Scaling Memcache at Facebook. In 
Proceedings of the 10th USENIX Symp. on Networked 
Systems Design and Implementation. USENIX, 
(2013), 385–398.

28.	 Open Compute Project. (2024); https://www.
opencompute.org/

29.	 Pan, S. Facebook’s Tectonic filesystem: Efficiency from 
exascale. In Proceedings of the 19th USENIX Conf. 
on File and Storage Technologies. USENIX, (2021), 
217–231.

30.	 Sahraei, A. et al. XFaaS: Hyperscale and low cost 
serverless functions at Meta. In Proceedings of the 
29th Symp. on Operating Systems Principles. ACM, 
(2023), 231–246.

31.	 Saokar, H. et al. ServiceRouter: A scalable and 
minimal cost service mesh. In Proceedings of the 
17th USENIX Symp. on Operating Systems Design and 
Implementation. USENIX, (2023).

32.	 Schlinker, B. et al. Engineering egress with Edge 
Fabric: Steering oceans of content to the world. In 
Proceedings of the Conf. of the ACM Special Interest 
Group on Data Communication. ACM, (2017), 418–431.

33.	 Tang, C. et al. Holistic configuration management 
at Facebook. In Proceedings of the 25th Symp. on 
Operating Systems Principles. ACM, (2015), 328–343.

34.	 Tang, C. et al. Twine: A unified cluster management 
system for shared infrastructure. In Proceedings of 
the 14th USENIX Symp. on Operating Systems Design 
and Implementation. USENIX, (2020), 787–803.

35.	 Veeraraghavan, K. et al. Kraken: Leveraging live 
traffic tests to identify and resolve resource 
utilization bottlenecks in large scale web services. In 
Proceedings of the 12th USENIX Symp. on Operating 
Systems Design and Implementation. USENIX, 
(2016), 635–651.

36.	 Veeraraghavan, K. et al. Maelstrom: Mitigating 
datacenter-level disasters by draining interdependent 
traffic safely and efficiently. In Proceedings of the 
13th USENIX Symp. on Operating Systems Design and 
Implementation. USENIX, (2018), 373–389.

37.	 Weiner, J. et al. TMO: Transparent memory offloading 
in datacenters. In Proceedings of the 27th ACM Intern. 
Conf. on Architectural Support for Programming 
Languages and Operating Systems. ACM, (2022), 
609–621.

38.	 Wu, Q. et al. Dynamo: Facebook’s data center-
wide power management system. ACM SIGARCH 
Computer Architecture News 44, 3 (2016), 469–480.

39.	 Yoon, D.Y. et al. FBDetect: Catching tiny performance 
regressions at hyperscale through in-production 
monitoring. In Proceedings of the 30th Symp. on 
Operating Systems Principles. ACM, (2024).

40.	Yu, K. and Kumar, R. Viewing the world as a computer: 
Global capacity management. Engineering at Meta, 
(2022); https://engineering.fb.com/2022/09/06/data-
center-engineering/viewing-the-world-as-a-computer-
global-capacity-management/

Chunqiang Tang is a research scientist and senior 
director at Meta, formerly known as Facebook. His 
research interests include AI accelerators, machine 
learning, high-performance computing, and cloud 
computing. Prior to joining Facebook, he was a research 
staff member and manager at the IBM T.J. Watson 
Research Center. 

© 2025 Copyright held by the owner/author(s). 
Publication rights licensed to ACM.

Watch the author discuss  
this work in the exclusive 
Communications video.  
https://cacm.acm.org/videos/
metas-hyperscale

FEBRUARY 2025  |   VOL.  68  |   NO.  2  |   COMMUNICATIONS OF THE ACM     63

research and advances


