
Article Type: Top Picks

IOCost: Block IO Control for Containers in
Datacenters
Tejun Heo, Meta Inc, Menlo Park, CA, 94025, USA

Dan Schatzberg, Meta Inc, Menlo Park, CA, 94025, USA

Andrew Newell, Meta Inc, Menlo Park, CA, 94025, USA

Song Liu, Meta Inc, Menlo Park, CA, 94025, USA

Saravanan Dhakshinamurthy, Meta Inc, Menlo Park, CA, 94025, USA

Iyswarya Narayanan, Meta Inc, Menlo Park, CA, 94025, USA

Josef Bacik, Meta Inc, Menlo Park, CA, 94025, USA

Chris Mason, Meta Inc, Menlo Park, CA, 94025, USA

Chunqiang Tang, Meta Inc, Menlo Park, CA, 94025, USA

Dimitrios Skarlatos, Carnegie Mellon University, Pittsburgh, PA, 15213, USA

Abstract—Resource isolation is a requirement in datacenter environments. However,
our production experience in Meta’s large scale datacenters shows that existing IO
control mechanisms for block storage are inadequate in containerized environments.
This paper presents IOCost, an IO control solution that is designed for containerized
environments and provides scalable, work-conserving, and low-overhead IO control
for heterogeneous storage devices and diverse workloads in datacenters. IOCost per-
forms offline profiling to build a device model and uses it to estimate device occupancy
of each IO request. To minimize runtime overhead, it separates IO control into a fast
per-IO issue path and a slower periodic planning path. A novel work-conserving bud-
get donation algorithm enables containers to dynamically share unused budget. We
have deployed IOCost across Meta’s datacenters comprised of millions of machines,
upstreamed IOCost to the Linux kernel, and open-sourced our device-profiling tools.

C ontainers are swiftly evolving into one of the
primary mechanisms for virtualizing capacity
in modern datacenters. As containers enable

higher levels of application consolidation, it is important
to build effective control and isolation mechanisms.

Resource isolation for compute, memory and net-
work have been the focus of a large body of research
with many improvements landing in Linux. However,
our production experience in Meta’s large-scale dat-
acenters shows that existing IO control mechanisms
(e.g., BFQ [1]) for block storage are inadequate for
datacenter workloads. There are several challenges
in providing robust IO control for containers. First, IO

XXXX-XXX © 2021 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

control needs to account for hardware heterogeneity
in datacenters. Multiple generations of SSDs, spinning
disks, local/remote storage, and novel storage tech-
nologies may all be available in a single datacenter.
Hardware heterogeneity is further amplified by their
vastly different performance characteristics in terms
of latency and throughput, not only across different
types of devices such as SSDs and hard drives, but
also within a type. Effective control further needs to
take into consideration SSD idiosyncrasies that may
over-exert their performance in short bursts and then
slow down drastically, adversely affecting a stacked
environment [2], [3].

Second, IO control needs to cater to the constraints
of a wide variety of applications. For instance, some
applications are latency-sensitive while others benefit
primarily from increased throughput, while yet others

Month Published by the IEEE Computer Society Publication Name 1



might perform sequential or random accesses, in bursts
or continuously. Unfortunately, identifying a balance
point between latency and throughput is particularly
challenging when device heterogeneity and application
diversity are combined at the datacenter scale.

Third, IO isolation needs to provide a set of
properties required in datacenters. Work conservation
is desirable in order to deliver high utilization and
avoid idle resources. In addition, some IO control
mechanisms rely on strict prioritization, which fails to
provide fairness when equal priority applications share
a machine. Furthermore, application developers often
cannot effectively estimate IO needs in terms of metrics
like IOPS on a per-application and per-device basis.
IO control mechanisms should be easy for application
developers to reason about and configure. Finally, IO
isolation has interactions with memory management
operations such as page reclaim and swap. IO control
must be aware of these interactions to avoid priority
inversions and other isolation failures.

Previous work in IO control has mostly focused
on VM-based virtualized environments with various
proposals that aim to enhance the hypervisor [4], [5],
[6], [7]. These approaches do not take into account
the intricacies of containers such as a single shared
operating system, the interactions of IO with the mem-
ory subsystem, and heavily stacked deployments. The
state-of-the-art solutions in the Linux kernel rely on
either BFQ [1] or limits based on a max bandwidth
usage through IOPS or bytes. However, these fail to
be sufficiently work-conserving, lack integration with
the memory subsystem or add excessive performance
overheads for fast storage devices.

In this work we introduce IOCost, a complete IO
control solution that holistically addresses the chal-
lenges of heterogeneous hardware devices and ap-
plications while satisfying the IO isolation needs of
containers at the datacenter scale, and taking into
consideration interactions with memory management.
The primary insight behind IOCost is that the major
challenge in IO control is the lack of understanding
of device occupancy. It becomes apparent when we
compare existing IO control with CPU scheduling. CPU
scheduling relies on techniques such as weighted fair
queuing to proportionally distribute CPU occupancy by
measuring CPU time consumption. In contrast, metrics
like IOPS or bytes are poor measures for occupancy,
particularly given the wide diversity of block devices.
Modern block devices rely heavily on internal buffering
and complicated deferred operations such as garbage
collection, which cause issues for techniques reliant
on device time sharing or ensuring fairness primarily
based on IOPS or bytes.

IOCost works by estimating device occupancy of
each IO request using a device-specific model. For
example, a 4KB read would have a different cost on a
high-end SSD than on a spinning disk. With a model
of occupancy and additional QoS parameters which
account for modeling inaccuracies and determine how
heavily to load the device, IOCost distributes occu-
pancy fairly among containers. System administrators
or container management systems configure weights
along the container hierarchy to ensure individual
containers or groups of containers receive a certain
proportion of IO service. IOCost further introduces a
novel work-conserving budget donation algorithm that
allows containers to efficiently transfer their spare IO
budget to other containers.

We have deployed IOCost across Meta’s data-
centers comprising millions of machines, upstreamed
IOCost to the Linux kernel, and open-sourced our
device-profiling and benchmarking tools.

Hardware and Workload
Heterogeneity

SSD Device Heterogeneity
Incremental hardware refresh and supply chain diversity
lead to heterogeneous SSDs in datacenters. Figure 1
shows the device performance characteristics of various
SSDs across Meta’s fleet. The left y-axis shows IOPS
for random and sequential reads and writes. The right
y-axis shows latency for reads and writes. We use fio
to measure the sustainable peak performance for each
device.

A B C D E F G H0K
100K
200K
300K
400K
500K

IO
Ps

read rand (iops)
write rand (iops)

read seq (iops)
write seq (iops)

0K
10K
20K
30K
40K
50K

La
te

nc
y 

(u
s)

read lat (us)
write lat (us)

FIGURE 1. Device heterogeneity across Meta’s fleet.

The eight types of SSDs (A-H) show distinctive
characteristics. Specifically, SSD H achieves high IOPS
at a low latency, SSD G offers low IOPS and a relatively
low latency, and SSD A provides moderate IOPS with a
higher latency. Each device usually represents less than
14% of the total fleet. About 20% of the SSD capacity
is spread over 18 devices not shown in the figure but
their characteristics are captured by the devices shown.



Workload Heterogeneity
Applications at Meta exhibit a large diversity in their IO
behavior. Figure 2 displays the IO demand of several
workloads at Meta. We measure the P50 over a week of
production data, and show per-second reads vs. writes
and random vs. sequential bytes. Workloads like Web
A and Web B are most typical of Meta workloads, with
a moderate amount of reads and writes mixed about
equally in terms of random and sequential operations.
Serverless workloads at Meta are highly overcommitted
and exhibit a mixed amount of reads and writes. Cache
A and Cache B are in-memory caching services that
use fast block devices as a backing store for in-memory
cache. Both exhibit high amounts of sequential IOs.

Web A Web B Serverless Cache A Cache B Video101

103

105

107

109

By
te

s/
Se

c 
(lo

gs
ca

le
) read rand write rand read seq write seq

FIGURE 2. IO workload heterogeneity.

Overall, a major challenge of effective IO control is to
be robust against heterogeneous hardware and diverse
workloads, without requiring per-workload configuration
(e.g., latency, IOPS, or bytes per second) that is often
too brittle and intractable to be used in production at
scale. An IO control mechanism needs to cater to the
compound requirements of workloads while avoiding
configuration explosion.

IOCost Design
IOCost’s goal is to perform IO control that takes into
account heterogeneous hardware devices and diverse
workload requirements while providing proportional
resources and strong isolation across containers.

Overview
IOCost explicitly decouples device and workload con-
figurations. For each device, IOCost introduces a cost
model and a set of quality-of-service (QoS) parameters
that define and regulate device behaviors. For work-
loads, IOCost leverages cgroup weights for proportional
configuration. This allows workload configuration to be
made independently of device intricacies and improves
the ease and robustness of large-scale configuration
in heterogeneous environments.

IOCost uses per-IO cost modeling to estimate the
occupancy of an individual IO operation and then uses

this occupancy estimate to make scheduling decisions
according to the assigned weight for each cgroup. Our
design separates out the low-latency issue path from a
periodic planning path which allows IOCost to scale to
SSDs that can reach millions of IOPS.

Figure 3 provides an overview of IOCost’s architec-
ture. IOCost is logically separated into the Issue Path
that operates on a microsecond timescale for each
IO operation (called a bio in Linux), and the Planning
Path that operates periodically at millisecond timescales.
Additionally, offline work is done to derive device cost
models and QoS parameters.

IOCost, first receives each bio in step 1 describing
the IO operation. In the next steps IOCost calculates the
cost of the bio, and then performs throttling decisions.
In step 2 , IOCost extracts features from the bio

and calculates the absolute cost using the cost model
parameters. Cost is represented in units of time, but
the cost of an IO is an occupancy metric, not latency. A
cost of 20ms indicates that the device can process 50
such requests every second but does not say anything
about how long each operation will take.

Next, in step 3 , the absolute IO cost is divided
by the issuing cgroup’s hierarchical weight (hweight)
to derive the relative IO cost. hweight is calculated by
compounding the cgroup’s share of weight among its
siblings while walking up the cgroup hierarchy. hweight
represents the ultimate share of the IO device the
cgroup is entitled to.

Step 4 shows the global vtime clock which pro-
gresses along with the wall clock at a rate specified by
the virtual time rate (vrate). Each cgroup tracks its local
vtime which advances on each IO by the IO’s relative
cost. Next, step 5 represents the throttling decision
based on how far the local vtime is behind the global
vtime. This gap represents a cgroup’s current IO budget.
If the budget is equal to or larger than an IO’s relative
cost, the IO is issued right away. Otherwise, the IO has
to wait until the global vtime progresses far enough.

In the planning path, IOCost collects cgroup us-
age and completion latency, and makes periodic ad-
justments to IO control. In step 6 , IOCost globally
adjusts vrate and consequently the total IO issued in
response to device feedback. Modeling may over- or
under-estimate true device occupancy and this vrate
adjustment ensures the device is well-utilized based
on queuing or latency metrics measured since the last
planning phase. Next, in step 7 , IOCost’s donation
algorithm efficiently donates excess budget to other
cgroups to achieve work conservation.

Offline in step 8 , IOCost leverages profiling, bench-
marking, and training across the deployed devices to
build cost models and QoS parameters per device.



Planning Path (~ms scale)Issue Path (~us scale)

QoS Control
params

Donation
Control

Device completion latencies

cgroup
usage: 0.054
hweight: 0.08 cgroup usage

bio
type: read
offset: 12GB
size: 1MB
device: A
buffer: {…}

Throttle 
Control

vrate
Control

global
vtime adjust

weights

adjust
vrate

bio relative cost

cgroup vtime

wall time

feature
extraction

Cost Model
Params
Logic

3

2

bio absolute cost

Live Model
Offline Device Models 

Profile
Benchmark

Train

Cost Model
Params

QoS 
Params

1 84

5

6

7

FIGURE 3. Overview of IOCost’s architecture for throttling decisions on the left and offline cost model on the right.

Issue Path
The issue path determines the cost of an IO, the
hweight, the available budget based on the local and
global vtimes, and makes throttling decisions.

The absolute cost of a bio is calculated by applying
the cost model to the features of the bio. Each cgroup
is also assigned a weight, which represents the propor-
tion of IO occupancy the cgroup is guaranteed among
its siblings. To avoid repeating recursive operations on
the hot path, the weights are compounded and flattened
into hweight which is cached and recalculated only
when the weights change.

A cgroup which does not issue IO and therefore
does not consume its budget will leave the device
underutilized. To address this, IOCost distinguishes
active cgroups. A cgroup becomes active when it issues
an IO and inactive after a full planning period passes
without any IO. An inactive cgroup is ignored during
hweight calculation. This low-overhead mechanism
keeps device utilization high since idle cgroups implicitly
donate their budget to the active cgroups. As a cgroup
becomes active or inactive, it increments a weight tree
generation number to indicate that weights have been
adjusted. Subsequent cgroups executing through the
issue path will notice this and recalculate their hweight.

Planning Path
The planning path is responsible for global orchestration
so that each cgroup operates efficiently with only local
knowledge and can converge on the desired hierarchi-
cally weighted fair IO distribution. It runs periodically
based on a multiple of the latency targets in order
to contain a sufficient number of IOs while allowing
granular control.

The planning path tallies how much IO each cgroup
is using to determine how much of their weight can be
donated, and adjusts the weights accordingly. Through

budget donations IOCost achieves work conservation
while keeping the issue-path operations strictly local
to the cgroup. The only donation-related issue-path
operation is reducing or canceling donation if its budget
runs low, which is also a local operation.

The planning path also monitors the device behavior
and adjusts how much IO can be issued across all
cgroups by adjusting vrate to control how fast or slow
the global vtime runs compared to the wall clock. For
example, if vrate is at 150%, the global vtime runs at
1.5x speed of the wall clock and generates 1.5x more
IO budget than the device cost model specifies. The
conditions and range of vrate adjustment are configured
by a system administrator through the QoS parameters.

Device Cost Modeling
IOCost decouples device cost modeling from runtime
IO control. Cost models are generated offline for each
device before deployment. IOCost natively supports a
linear model based on bio request properties such as
request type, access pattern, and size. For maximum
flexibility, IOCost allows a cost model to be expressed
as an arbitrary eBPF program. Cost models can be
derived by issuing saturating workloads (e.g. as many
4K random reads as possible) to determine the device
occupancy consumed of a particular IO operation.

Our tools use fio and saturating workloads to infer
the linear model’s parameters for a device. Systemat-
ically modeling devices in this way is practical even
with the roughly thirty different storage devices found in
Meta datacenters. We have made our modeling tools
available in the Linux source tree.

Quality of Service
To handle inaccuracies in cost modeling, IOCost dy-
namically modifies the vrate which controls the overall
IO issue rate. If the system could issue more IO and



Period 1 

Container
A

Container
B

IO A1 IO A2 IO A3

Queued IOs
Donate 1/3

IO 
B1

1/3
hweight A

1/3

hweight B
2/3

Unused

Period 2 

Container
A

Container
B

Planning
Phase

1/3
hweight A

1/3

hweight B
2/3

IO B2

IO 
A2

IO 
A3

2/3

1/3

IO 
A4

IO 
A5

(a) (b)

Planning
Phase

IO A4 IO A1
No donation 

changes

IO 
A6

IO 
B1 Unused

Container
A

Container
B

1/3
hweight A

1/3

hweight B
2/3

IO B2

IO 
A2

IO 
A3

2/3

1/3

IO 
A4

IO 
A5

(c)

Issue Path
Rescind

IO A1 IO A6

IO 
B1 Unused IO B3

Donation rescind
in issue path

IO 
B4

2/3

FIGURE 4. Budget donation example at the planning phase (a), after the planning phase (b), and during issue path (c).

the device is not saturated, vrate is adjusted upwards. If
the device is saturated, vrate is adjusted downwards. A
system administrator can also bound vrate explicitly or
implicitly through latency targets which provides a way
to tradeoff throughput and latency as workload needs
dictate.

We developed a systematic approach to determine
QoS parameters for each device in the Meta fleet.
Specifically, we developed ResourceControlBench, a
highly configurable synthetic workload imitating the
behavior of latency-sensitive services at Meta. We
leverage ResourceControlBench for QoS tuning by
observing its behavior across vrate ranges. We observe
that as vrate is lowered too much, ResourceControl-
Bench’s memory footprint is limited by the available I/O
for paging operations. Yet if vrate is configured too high,
ResourceControlBench’s performance is impacted by a
co-located "aggressor" job which attempts to saturate
the device. vrate is limited between these points to
ensure an appropriate tradeoff between throughput and
latency.

Budget Donation
Individual cgroups do not always issue IOs that saturate
their hweight. IOCost ensures work conservation by
allowing other cgroups to utilize the device by dy-
namically lowering the weights of the donor cgroups.
We explored multiple options including temporarily
accelerating vrate, but found that local adjustment of
weight was the only solution that met all the following
requirements: 1) the issue path remains low overhead,
2) the total amount of IO issued never exceeds what
vrate dictates, and 3) donors can cheaply rescind
anytime.

Each planning phase identifies the donors and
calculates how much of their hweight can be given
away. It then calculates their lowered weights that
compound to the after-donation hweights. The weight
calculation process is structured in a way that parent
weight adjustments are derived solely from child weight
adjustments.

As donation happens through weight adjustments,
the IO issue path does not change and there is no

interaction with device-level behaviors, satisfying 1)
and 2). A donor can rescind by updating its weight
and propagating the update upwards in the issue
path without any global operation, satisfying the final
requirement.

High-level Donation Example.
In Figure 4(a), the hweights of containers A and B
are 1

3 and 2
3 , respectively. During the planning phase,

it detects that B has not used half of its budget. To
avoid leaving the device underutilized, it transfers half
of B’s original budget to A. Figure 4(b) shows how this
affects the second period. With hweight increased, A’s
IOs have lower relative costs and can be issued more
frequently, while B saturates its new lowered budget.
At the end of the period, there is no need for further
adjustments. Figure 4(c) shows that in the middle of
the third period, B attempts to issue additional IOs and
rescinds its donation in the issue path, without waiting
for the next planning phase. Note that a container could
also rescind only a portion of its original donation.

IO Control Across Meta’s Fleet
We have deployed IOCost across Meta’s fleet. Our
evaluation demonstrates that IOCost outperforms other
solutions to provide proportional, work-conserving, and
memory-management-aware IO control with minimal
overhead.

Stacked Latency-Sensitive Workloads
One important production use of IOCost ensures that
multiple containers receive their fair proportion of
IO service. At Meta, we run a workload similar to
Zookeeper which provides a strongly-consistent API
for configuration, metadata and coordination primitives.
The service triggers a snapshot of the in-memory
database which results in momentary write spikes even
under nominal loads. The production service has a one
second SLO for read and write operations that makes
it difficult to collocate with other services.

We analyzed the behavior of this service in a sce-
nario with twelve ensembles. Specifically, we consider



Hour 1 Hour 3 Hour 5
Time Over Six Hours

1000

3000

5000

7000

La
te

nc
y 

(m
s)

SLO

BFQ blk-throttle IOLatency IOCost

FIGURE 5. Impact of different IO control methods on
ZooKeeper latency SLO violations.

eleven well-behaved ensembles that are collocated with
a twelfth ensemble that behaves as a noisy neighbor.
Figure 5 shows the P99 latency. SLO violations are
characterized by their frequency and magnitude. With
blk-throttle, BFQ and IOLatency, the ensembles
repeatedly violate their one-second SLO throughout
the six-hour experiment. Specifically, blk-throttle
shows 78 violations with some lasting tens of seconds.
BFQ shows 13 violations each lasting 2-5 seconds.
IOLatency cannot be configured for proportional con-
trol and also shows poor behavior of 31 violations with
the longest being 7.8 seconds. With IOCost, the effects
of the noisy neighbor ensemble and snapshots were
appropriately isolated, resulting in only two marginal
violations of 1.5 seconds and 1.04 seconds.

Remote Storage and Cloud Environments
Beyond local storage, IOCost is also useful for providing
IO control for remote block storage environments like
those found in public clouds. To evaluate the broad
applicability of IOCost, we replace the production web
server at Meta with ResourceControlBench that is
collocated with a high-speed memory-leak program
running in a low priority cgroup. We then report the
drop in ResourceControlBench’s RPS as a measure-
ment of how well IOCost protects the workload from
interference.

We run the two workloads in a public cloud’s
VM whose guest OS is configured with IOCost. Fig-
ure 6 shows the resulting protection ratios of the four
configurations—two AWS Elastic Block Store (gp3-
3000iops, io2-64000iops), and two Google Cloud Persis-
tent Disk configurations (balanced, SSD). While there
are variances from the different latency profiles, the
experiment clearly shows that IOCost can effectively
isolate IO for all configurations whether local or remotely
attached. This experiment demonstrates that IOCost’s
approach is robust and can be successfully applied to
environments outside Meta.

AWS A AWS B GCP A GCP B0.0
0.2
0.4
0.6
0.8
1.0

No
rm

al
ize

d 
RP

S

w/o IOCost w/ IOCost

FIGURE 6. Requests per second (RPS) of a latency-sensitive
workload when stacked with a memory-leak workload in AWS
EBS, and Google Cloud Persistent Storage.

Adoption in Production and Future
Research Directions

IOCost is a holistic solution that introduces for the first
time effective IO control for containerized environments
and heterogeneous IO devices in datacenters.

A Holistic Resource Control Solution for
Datacenters
IOCost introduces an end-to-end approach for IO
control for containers that addresses the need of
datacenter environments. Specifically, IOCost presents
a robust methodology to accurately estimate device-
specific occupancy models and a set of Quality-of-
Service parameters offline. Furthermore, it separates
scheduling work in the kernel between a fast and a
slow path, leverages cgroup semantics, device-specific
models, and online device behavior. The approach and
methodology of IOCost can enable future research into
resource control as the memory subsystem becomes
increasingly heterogeneous with multiple memory tiers
and upcoming interconnects and devices enabled by
CXL.

Integration with Memory Offloading
IOCost’s design enabled other use cases within Meta.
Specifically, IOCost enabled efficient memory offloading
to secondary storage to save memory through paging
and swap [8]. Regularly depending on secondary
storage through the memory subsystem has placed
particularly high demands on the block layer to ensure
fairness, low latency and high utilization. Advances to
storage media are likely to lead to this model of memory
offloading becoming even more prevalent and further
the importance of IOCost to work well on a wide range
of devices.



Linux Upstreaming and Open Source
Toolsets
IOCost is upstreamed into the Linux kernel and the
device-profiling and benchmarking tools have been
made open source. Our future work is to create a unified
database of per-device profiles that can be automati-
cally pulled and deployed by various Linux distributions.
The benchmarking and profiling tools of IOCost will
help future work calibrate and optimize experimental
setups to closely match production scenarios.

IOCost’s Integration with Systemd
IOCost is currently being integrated into systemd that
provides a suite of basic system management blocks
for the Linux system. With the integration of IOCost
into systemd most Linux deployments will be able to
automatically take advantage of the IOCost benefits
within and outside the datacenter. Dynamically tuning
IOCost in the kernel and device occupancy models
across environments, such as mobile, provides rich
opportunities for performance and power optimizations.

Adoption in The Cloud
With IOCost available in the upstream Linux kernel,
organizations other than Meta have begun to deploy it
with success. DigitalOcean, a cloud hosting provider,
offers Infrastructure-as-a-Service (IaaS) in a multi-
tenant environment. In such environments, tenants tend
to consume shared resources such as IO which may
result in noisy neighbor challenges where one user’s
load negatively impacts other users. DigitalOcean is
actively using IOCost to eliminate such issues and
ensure that the overall performance of IO resources are
functioning at optimum levels. They have successfully
deployed IOCost across their entire fleet of servers
with automation to tune QoS settings to eliminate the
worst noisy neighbor cases. Additionally, Alibaba cloud
provides a detailed documentation on how to configure
IOCost on their cloud infrastructure [9].

Budget Donation Beyond IO
IOCost’s novel budget donation algorithm for IO can be
adopted for efficient resource control for other resources
beyond IO. Managing deep cgroup hierarchies of
containerized workloads efficiently is a major challenge
for datacenter environments due to the high cost of
traversing the cgroup hierarchy. IOCost’s approach
enables budget donations with only local updates along
their path in the hierarchy to the root. This approach
can enable efficient budget donations for other critical
resources such as CPU and memory.

Integrating IO control
Integrating IO control and SSD devices into the system
stack introduces several challenges. IOCost’s approach
highlights the need for building high-fidelity device
occupancy models that will help to further improve IO
control and workload collocation efficiency. IOCost fur-
ther provides insights into how future SSD architectural
designs can take into account datacenter requirements.
Future research in SSD hardware and interfaces can
help eliminate unpredictable device behavior due to
hardware-specific operations such as garbage collec-
tion and caching.

Tejun Heo Tejun is a kernel engineer at Meta and can
be reached at htejun@meta.com.

Dan Schatzberg Dan is a research scientist at Meta
and can be reached at dschatzberg@meta.com.

Andrew Newell Andrew was a research scientist at
Meta during this work. Now he is with Tesla and can be
reached at andyjnewell@gmail.com.

Song Liu Song is a kernel engineer at Meta and can
be reached at songliubraving@meta.com.

Saravanan Dhakshinamurthy Saravanan is a produc-
tion engineer at Meta and can be reached at sara-
vanand@meta.com.

Iyswarya Narayanan Iyswarya is a performance and
capacity engineer at Meta and can be reached at
inarayanan@meta.com.

Josef Bacik Josef is a kernel engineer at Meta and can
be reached at jbacik@meta.com.

Chris Mason Chris is an engineering director at Meta
and can be reached at clm@meta.com.

Chunqiang Tang Chunqiang is a senior director at Meta
and can be reached at tang@meta.com.

Dimitrios Skarlatos Dimitrios is an assistant professor
of computer science at Carnegie Mellon University and
can be reached at dskarlat@cs.cmu.com.

REFERENCES
1. P. Valente and F. Checconi, “High throughput disk

scheduling with fair bandwidth distribution,” IEEE Trans-
actions on Computers, vol. 59, no. 9, pp. 1172–1186,
2010.



2. J. He, S. Kannan, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “The unwritten contract of solid state
drives,” in Proceedings of the Twelfth European Con-
ference on Computer Systems, EuroSys ’17, (New
York, NY, USA), p. 127–144, Association for Computing
Machinery, 2017.

3. F. Chen, D. A. Koufaty, and X. Zhang, “Understanding
intrinsic characteristics and system implications of
flash memory based solid state drives,” in Proceedings
of the Eleventh International Joint Conference on
Measurement and Modeling of Computer Systems,
SIGMETRICS ’09, (New York, NY, USA), p. 181–192,
Association for Computing Machinery, 2009.

4. A. Gulati, I. Ahmad, and C. A. Waldspurger, “PARDA:
Proportional allocation of resources for distributed
storage access,” in 7th USENIX Conference on File
and Storage Technologies (FAST 09), (San Francisco,
CA), USENIX Association, Feb. 2009.

5. A. Gulati, A. Merchant, and P. J. Varman, “mclock: Han-
dling throughput variability for hypervisor IO scheduling,”
in 9th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 10), (Vancouver,
BC), USENIX Association, Oct. 2010.

6. L. Huang, G. Peng, and T.-c. Chiueh, “Multi-
dimensional storage virtualization,” SIGMETRICS Per-
form. Eval. Rev., vol. 32, p. 14–24, June 2004.

7. A. Singh, M. Korupolu, and D. Mohapatra, “Server-
storage virtualization: Integration and load balancing
in data centers,” in SC ’08: Proceedings of the 2008
ACM/IEEE Conference on Supercomputing, pp. 1–12,
2008.

8. J. Weiner, N. Agarwal, D. Schatzberg, L. Yang, H. Wang,
B. Sanouillet, B. Sharma, T. Heo, M. Jain, C. Tang, and
D. Skarlatos, “Tmo: Transparent memory offloading in
datacenters,” in Proceedings of the 27th ACM Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS
’22, (New York, NY, USA), p. 609–621, Association for
Computing Machinery, 2022.

9. Alibaba Cloud. https://www.alibabacloud.com/help/en/
elastic-compute-service/latest/configure-the-weight-
based-throttling-feature-of-blk-iocost.


	Hardware and Workload Heterogeneity
	SSD Device Heterogeneity
	Workload Heterogeneity

	IOCost Design
	Overview
	Issue Path
	Planning Path
	Device Cost Modeling
	Quality of Service
	Budget Donation

	IO Control Across Meta's Fleet
	Stacked Latency-Sensitive Workloads
	Remote Storage and Cloud Environments

	Adoption in Production and Future Research Directions
	A Holistic Resource Control Solution for Datacenters
	Integration with Memory Offloading
	Linux Upstreaming and Open Source Toolsets
	IOCost's Integration with Systemd
	Adoption in The Cloud
	Budget Donation Beyond IO
	Integrating IO control

	Biographies
	Tejun Heo
	Dan Schatzberg
	Andrew Newell
	Song Liu
	Saravanan Dhakshinamurthy
	Iyswarya Narayanan
	Josef Bacik
	Chris Mason
	Chunqiang Tang
	Dimitrios Skarlatos

	REFERENCES
	REFERENCES

