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Abstract
This paper presents Meta’s FBDetect system, which advances

the state of the art in performance regression detection by

catching regressions as small as 0.005% in noisy production

environments. FBDetect monitors around 800,000 time series

covering various types of metrics (e.g., throughput, latency,

CPU and memory usage) to detect regressions caused by

code or configuration changes in hundreds of services run-

ning on millions of servers. FBDetect introduces advanced

techniques to capture stack traces fleet-wide, measure fine-

grained subroutine-level performance differences, filter out

deceptive false-positive regressions, deduplicate correlated

regressions, and analyze root causes. Beyond these individ-

ual techniques, a key strength of FBDetect over prior work

is its battle-tested robustness, proven by seven years of pro-

duction use, and each year catching regressions that would

have wasted millions of servers if left undetected.

CCS Concepts: • General and reference → Measure-
ment; Performance.
Keywords: performance regression, anomaly detection.
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1 Introduction
Meta operates a private cloudwithmillions of servers. At this

scale, even a minor performance regression can result in the

waste of many servers. These small regressions are common.

For example, among approximately 800 regressions per year

in our serverless platform, about one-tenth result in only a

0.005% to 0.01% increase in CPU usage, yet these tiny regres-

sions collectively would have wasted around 4,000 servers

if left undetected. Moreover, the median CPU regression is

also small, at just 0.048%. These data highlight the critical

need for accurate detection of small regressions.

Moreover, it is essential to detect small regressions in pro-
duction. While pre-production performance testing [14, 25,

67] is necessary, some issues may slip through due to the

difficulty of precisely replicating complex production envi-

ronments in testing. Additionally, catching tiny regressions

requires a massive amount of performance data samples,

which are more feasible to gather from a large production

fleet than a small test environment.

Meta’s FBDetect system performs in-production regression

detection by identifying anomalies in service time-series data

(e.g., CPU usage) triggered by code or configuration changes.

We illustrate several challenges it faces through examples.

While Figure 1(a) appears to show no regression, and Fig-

ures 1(b) and 1(c) seem to show obvious regressions, the

reality is the opposite. Figure 1(a) contains a minor regres-

sion of 0.005%, indicated by a barely visible change in the

straight line representing the population mean. Despite this

subtlety, FBDetect must accurately detect it by managing the

high noise. Figure 1(b) shows a rise in a specific subroutine’s
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(a) True regression

but barely visible.
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(b) False positive

due to cost shift.
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(c) False positive due

to transient issues.

Figure 1. Challenges for FBDetect: It must catch the barely

visible tiny regression in Figure (a). It also must filter out the

deceptive false-positive regressions in Figures (b) and (c).
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CPU usage, but FBDetect must filter out this false-positive

regression, as it is caused by code refactoring that moves

code across subroutines without increasing their total CPU

usage. Figure 1(c) shows a drop in throughput, but FBDetect

must filter out this false-positive regression caused by tran-

sient issues, such as server failures, maintenance operations,

load spikes, software rolling updates, canary tests, and traffic

shifts, which can last from seconds to hours. Existing meth-

ods struggle to handle these transient issues. For instance,

typical change-point detection algorithms [3] would result

in a 99.7% false positive rate in our environment.

To address these and other challenges, we propose a com-

prehensive set of techniques, as summarized below.

Subroutine-level regression detection. We significantly

reduce the variance (i.e., noise) in performance data by mea-

suring CPU usage at the subroutine level rather than at the

overall service level. Detecting a tiny 0.005% regression in a

service’s overall CPU usage is a daunting task, as illustrated

in Figure 1(a). However, if this 0.005% regression originates

from a single subroutine that consumes 0.1% of the total

CPU, the relative change at the subroutine level is
0.005%
0.1%

=5%,

which is much more substantial. Consequently, small regres-

sions are easier to detect at the subroutine level. This effect

occurs because CPU metrics exhibit lower variance at the

subroutine level than at the overall service level (§2).

Filtering subroutine-level false positives. Unfortunately,
isolated subroutine level metrics can be misleading, as sim-

ply moving code from subroutine 𝐴 to subroutine 𝐵 may

create the illusion of regression in subroutine 𝐵, like the one

in Figure 1(b). Our evaluation shows that 34% of subroutine-

level regressions are false positives caused by these cost

shifts—an issue not addressed by existing algorithms. FBDe-

tect employs code analysis to filter out these false positives. It

examines higher-level cost domains such as upstream callers

or the encapsulating class of the subroutine under investi-

gation. If the cost change in a higher-level cost domain is

negligible, FBDetect considers the regression merely a cost

shift and will not report it.

Subroutine-level measurement. Instrumenting every sub-

routine in every service to track subroutine-level CPU usage

is not only cumbersome to deploy but also incurs high run-

time overhead. To address this issue, we elevate the stack-

trace sampling approach to hyperscale, enabling efficient

measurement of CPU usage for every subroutine across all

services. FBDetect leverages eBPF or a language runtime’s

ability to periodically collect stack-trace samples fleet-wide.

From these samples, it derives each subroutine’s relative

CPU usage. For example, if 100 stack-trace samples are col-

lected for a service, and a subroutine foo appears in 8 of these
samples, the normalized CPU usage of foo is calculated as 8%.
However, sampling the stack trace of a program written

in interpreted languages like Python results in retrieving the

interpreter’s stack trace, instead of the Python program’s

stack trace. To address this issue, we introduce PyPerf, which
uses a kernel eBPF profiler to sample and map the Python

interpreter’s stack trace to the Python program’s stack trace.

To our knowledge, PyPerf is the first profiler capable of

deriving an end-to-end stack trace across a Python program

and the native C/C++ libraries it invokes.

Filtering transient issues. FBDetect accurately classifies

99.7% of regressions, such as the one shown in Figure 1(c),

as false positives caused by transient issues, using a com-

bination of sophisticated techniques. These include change

point detection [3] to identify anomalies, trend analysis [17]

to remove seasonality, Symbolic Aggregate approXimation

(SAX) [43] to distinguish anomalies caused by different fac-

tors, and methods that examine beyond a single change point

to assess whether an anomaly recovers autonomously.

Deduplicating regressions. A single code change can lead

to anomalies in numerous monitoring metrics, resulting in

an overwhelming number of incident reports. FBDetect lever-

ages clustering algorithms tomerge regressions likely caused

by the same change. While clustering algorithms are well-

known, our unique contributions include: (1) proposing a

hybrid clustering algorithm that combines the efficiency of

Self-Organizing Map [36] with the accuracy of pairwise clus-

tering, and (2) introducing effective domain-specific features

for clustering, such as regression root-cause candidates, sub-

routine names, and performance-metric names.

Root cause analysis. FBDetect combines multiple tech-

niques to identify the code change responsible for a regres-

sion: 1) code and stack-trace analysis, where for a regression

in subroutine 𝐴, code changes that modify downstream sub-

routines transitively invoked by 𝐴 are flagged as potential

suspects; 2) text analysis, which calculates a similarity score

between the regression context (e.g., stack trace) and the code

change context (e.g., change description); and 3) time series

correlation, which identifies metrics that strongly correlate

with the regression’s timing.

Contributions. Our primary contribution is a comprehen-

sive set of techniques that enables FBDetect to detect re-

gressions as small as 0.005%—a level of precision previously

unreported. Moreover, a key strength of FBDetect over prior

work is its battle-tested robustness, proven over seven years

of production use and each year catching regressions that

would have wasted millions of servers if left undetected.

2 Feasibility of Detecting Tiny Regressions
At first glance, detecting the tiny regression in Figure 1(a)

seems implausible, so we first address its feasibility.

We develop a simple analytic model to aid in the dis-

cussion. Suppose we collect 𝑛 performance samples after
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a code change to assess its performance impact. Let 𝜎2
de-

note the sample variance, and Δthreshold denote the detection

threshold—the smallest performance difference that can be

reliably detected, such as a 0.005% difference in CPU usage.

In Appendix A.2, we derive the following expression, where

the symbol ∝ denotes proportionality.

Δthreshold ∝
√︁
𝜎2/𝑛 (1)

We lower the detection threshold Δthreshold by simultane-

ously reducing 𝜎2
and increasing 𝑛. While a hyperscale en-

vironment can more easily increase 𝑛 by collecting samples

across many servers, it also exhibits high variance (𝜎2
) due

to factors like mixed server generations and diverse request

types. Thus, relying solely on fleet size to increase 𝑛, without

FBDetect’s optimizations to reduce 𝜎2
, would take weeks to

years to collect enough samples for a low Δthreshold, even at

Meta’s hyperscale. FBDetect’s optimizations reduce 𝜎2
by

100-10000 times, obtaining sufficient samples within hours

or a few days (§3). Additionally, reducing variance is crucial

for minimizing fleet-wide resource waste (Appendix A.4).

Subroutine-level measurements. To lower Δthreshold, we

reduce the variance 𝜎2
by measuring CPU usage at the sub-

routine level rather than at the Linux process level. For

simplicity, assume a process comprises 𝑘 subroutines with

independent and identically distributed (IID) CPU usage.
1

Let random variables 𝑋process and 𝑋subroutine denote the CPU

usage of the process and each subroutine, respectively, with

𝑋process =
∑𝑘

𝑖=1𝑋subroutine𝑖
. Then,

Variance(𝑋subroutine) = Variance(𝑋process)/𝑘. (2)

According to Expression 1, the smaller variance at the subrou-

tine level allows detection of regressions
1√
𝑘
times smaller.

While this analysis shows that using a subroutine 𝐴’s

absolute-CPU-usage metric 𝑋𝐴 can detect small regressions,

Appendix A.3 shows that using the relative-CPU-usage met-

ric gCPU𝐴 achieves the same effect, where gCPU𝐴 =
𝑋𝐴

𝑋process

.

We prefer gCPU𝐴 over 𝑋𝐴 because gCPU𝐴 can be more eas-

ily calculated from stack-trace samples. For example, if 100

stack-trace samples are collected, and subroutine 𝐴 appears

in 8 of these samples, gCPU𝐴=8%.

For a hyperscale service, its number of subroutines (𝑘 in

Expression 2) can be very large. Excluding negligible sub-

routines, we call those with a gCPU of 0.001% or higher

as “non-trivial.” The non-trivial subroutines in our server-

less platform have a median gCPU of 0.0083%. Accordingly,

we estimate the 𝑘 in Expression 2 as 𝑘=1/0.0083%=12,048.

The large value of 𝑘 significantly reduces the variance in

Expression 2, enabling detection of small regressions.

In addition to CPU metrics, FBDetect can support other

1
Although subroutines generally do not follow the IID assumption and are

hard to analyzemathematically, the essence of this simplified analysis holds—

the process-level variance is decomposed across numerous subroutines,

resulting in much smaller variance at the subroutine level.

Time

49.960%

49.980%

50.000%

50.020%

50.040%

50.060%

C
PU

 U
sa

ge

(a)𝑚=500,000.

Time
49.985%

49.990%

49.995%

50.000%

50.005%

50.010%

C
PU

 U
sa

ge

(b)𝑚=5,000,000.
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(c)𝑚=50,000,000.

Figure 2. The average of𝑚 time series from𝑚 servers mea-

suring Linux-process-level CPU usage. As𝑚 increases, noise

reduces. This effect can be explained using the Law of Large

Numbers, as described in Appendix A.1.
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(b)𝑚=5,000.
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(c)𝑚=50,000.

Figure 3. The average of𝑚 time series from𝑚 servers mea-

suring subroutine-level CPU usage. This figure uses samples

from 1000 times fewer servers than Figure 2.

subroutine-level metrics, such as latency, throughput, and

error rate per RPC endpoint. However, memory and other

application-level metrics require manual instrumentation if

subroutine-level detection is desired.

Validation via simulation. Production evaluation of our

approach for detecting small regressions will be presented

in §6. Here, we validate its feasibility through simulations.

In these simulations, we conservatively set 𝑘=1000.

Figure 1(a) simulates CPU usage data collected from a sin-

gle server, sampling from a normal distribution with mean

𝜇=0.5 (i.e., 50% CPU usage) and variance 𝜎2
=0.01, while cap-

ping sample values within [0, 1]. In the second half of the

time series, the mean increases to 50.005%, representing a

0.005% regression, though this change is barely visible.

Figure 2 simulates sampling from many servers. We sam-

ple from𝑚 servers, generate𝑚 time series like the one in

Figure 1(a), average them, and plot the average for various

values of𝑚. To simulate servers of different generations, the

𝑚 servers exhibit different performance. Samples from half

of the 𝑚 servers have 𝜇=40% and 𝜎2
=0.01, with the mean

changing to 𝜇=40.003%mid-series to simulate a 0.003% regres-

sion. The other half have 𝜇=60% and 𝜎2
=0.02, with the mean

changing to 𝜇=60.007% mid-series. The regression amounts,

0.003% and 0.007%, differ because a code changemay perform

differently across server generations. Figure 2(c) shows that

the tiny regression can be detected with sufficient samples,

though sampling from 50,000,000 servers is impractical.

Figure 3 simulates subroutine-level measurements. The

Linux-process-level CPU usage in Figure 2 is distributed
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across 𝑘=1000 subroutines.2 The lower variance at the sub-

routine level (see Expression 2) enables Figure 3 to detect the

tiny regression by sampling from 1000 times fewer servers

than Figure 2, making it practical for production use.

Although the simulation focuses on large services,

subroutine-level measurements also enable accurate regres-

sion detection in small services. For instance, FBDetect can

detect regressions as small as 0.5% for our Invoicer service
running on only 16 servers, as described in the next section,

3 Workloads
In this section, we summarize the diverse workloads sup-

ported by FBDetect. While prior methods have demonstrated

effectiveness on certain workloads, for large-scale adoption,

the biggest challenge is ensuring a method’s robustness

across diverse workloads. Robustness is a key strength of

FBDetect. Currently, FBDetect monitors around 800,000 time

series to detect regressions in hundreds of services. These

time series are from a wide range of metrics, including CPU,

memory, throughput, latency, error rate, coredump count,

and many application-level metrics.

Among services supported by FBDetect, about 500 use

stack-trace sampling. Their size, i.e., the number of servers

they consume, varies from five to more than half a million

servers. The P5 (5th percentile), P10, P50, and P90 of the

service sizes are 23, 64, 1,251, and 40,527, respectively. This

shows that FBDetect works for services big and small.

As the workload descriptions involve the setup of detec-

tion windows, we explain the concept below. FBDetect peri-

odically scans a service’s time-series data to detect regres-

sions. It divides the time series into three parts, as shown in

Figure 4: (1) the historic window, which serves as the baseline

for comparison; (2) the analysis window, where regressions
are reported by comparing its data against that of the his-

toric window; and (3) the extended window, which evaluates

whether an observed regression persists or disappears. Be-

low, we describe several workload examples.

FrontFaaS isMeta’s serverless platform for PHP code. It runs

on more than half a million servers, and tens of thousands of

developers write code for it, with thousands of code commits

every workday. We use the Xenon [55] profiler in the PHP

runtime to sample its stack traces.

Besides subroutine-level regressions, FBDetect detects

endpoint-level regressions for FrontFaaS. An endpoint is a

user-facing URL. As an endpoint request may involve asyn-

chronous and concurrent processing across multiple threads,

we use end-to-end tracing [30] to aggregate the costs of all

subroutines involved. Regressions in this aggregated cost are

called endpoint-level regressions. Moreover, FBDetect detects

metadata-annotated regressions for FrontFaaS. A subroutine

2
The sample mean in Figure 3 is higher than 𝜇=50%/1000=0.05% because

filtering out negative samples from the normal distribution with mean

𝜇=0.05% raises the sample mean above 0.05%.

Figure 4. Time windows used in regression detection.

can annotate its stack frame by calling SetFrameMetadata()
to provide additional context. This is useful for detecting

regressions that occur only under certain conditions, e.g.,

processing requests on behalf of a specific category of users.

Table 1 shows two FBDetect configurations that are used

for FrontFaaS simultaneously. One detects large regressions

(3%) more quickly, while the other detects small regressions

(0.005%) but needs to wait longer to collect more data.

PythonFaaS is Meta’s serverless platform for Python code.

For PythonFaaS, FBDetect detects regressions in subroutines

and endpoints, as well as per-data-type I/O regressions to

the downstream database (see TAO below).

TAO [12] is a graph database. For its traffic from FrontFaaS

and PythonFaaS, FBDetect detects regressions in subroutines,

endpoints, and per-data-type I/Os. For other traffic, FBDetect

detects regressions in query-processing throughput.

AdServing is a group of ultra-large services that work to-

gether to serve ads to different products.

Invoicer is a small service running on just 16 servers to

generate billing invoices. To ensure sufficient stack-trace

samples, eBPF collects about one sample per server per sec-

ond for Invoicer, compared to one sample per server per

minute for FrontFaaS. Additionally, it uses long historical,

analysis, and extended windows of 14 days, 1 day, and 1 day,

respectively. These settings enable FBDetect to collect suf-

ficient samples for detecting gCPU regressions as small as

0.5% in this small service.

Capacity Triage (CT). CT is a tool that leverages FBDe-

tect to detect throughput regressions for a diverse set of

services. CT relies on Kraken [76] to benchmark a service’s

per-server maximum throughput. If this maximum through-

put unexpectedly drops, it is a regression on the supply side

(“CT-supply” in Table 1). Additionally, if the total peak re-

quests to a service’s all servers unexpectedly increase, it is a

regression on the demand side (“CT-demand” in Table 1).

Summary: The examples in Table 1 demonstrate FBDetect’s

ability to detect regressions across diverse workloads. Their

historical, analysis, and extended windows range from hours
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Name
Number of
servers
used

Number of
servers

saved yearly
Language

Leverage
Stack
Trace

Detection
Threshold
(Δthreshold)

Re-run
Interval

Historical
Window

Analysis
Window

Extended
Window

FrontFaaS (large)

O(100,000) O(100,000) PHP Yes

3% 30 minutes 10 days 3 hours N/A

FrontFaaS (small) 0.005% 2 hours 10 days 4 hours 6 hours

PythonFaaS (large)

O(100,000) O(100,000) Python Yes

0.5% 1 hour 10 days 6 hours N/A

PythonFaaS (small) 0.03% 4 hours 10 days 6 hours 6 hours

TAO (FrontFaaS)

O(100,000) O(10,000) C++ Yes

0.05% 2 hours 10 days 4 hours 1 day

TAO (non-FrontFaaS) 0.05% 1 hour 10 days 1 day 6 hour

AdServing (short)

O(1,000,000) O(10,000) C++ Yes

0.2% 6 hours 10 days 1 day 12 hours

AdServing (long) 0.1% 1 day 16 days 9 days N/A

Invoicer (short) O(10) Negligible C++ Yes 0.5% 12 hours 14 days 1 day 1 day

CT-supply (short)

Diverse O(10,000) Diverse No

5% (relative) 12 hours 7 days 1 day 1 day

CT-supply (long) 5% (relative) 12 hours 10 days 7 days 1 day

CT-demand 5% (relative) 12 hours 7 days 1 day N/A

Table 1. Configurations of FBDetect for different workloads. Periodically, at every “re-run interval,” FBDetect analyzes data

within the most recent historical window, analysis window, and extended window to detect regressions. FBDetect can be

configured to use either an absolute threshold (first nine rows) or a relative threshold (last three rows). For example, an increase

of gCPU from 1% to 1.1% is a 0.1% absolute change and a 10% relative change.

to days. These long windows allow FBDetect to gather suf-

ficient samples to enable a small detection threshold. This

highlights the importance of using fine-grained subroutine-

level measurements to reduce variance.Without significantly

reducing variance, it would take 100-10000 times longer to

obtain enough samples, causing unacceptable delays.

4 Performance Profiling Using Stack Traces
Before detailing FBDetect’s regression detection algorithms,

we describe how FBDetect collects performance data as its

inputs, focusing on fine-grained subroutine-level CPU data.

We periodically collect stack traces across the entire fleet

to infer relative time spent in each subroutine. For example,

if 100 stack-trace samples are collected for a service, and

subroutine foo appears in 8 samples, its normalized CPU

usage (gCPU) is 8%. Note that the gCPU of a subroutine

includes not only the cost of the subroutine itself but also

the child subroutines recursively invoked by the subroutine.

However, sampling the stack trace of a program written in

interpreted languages results in retrieving the interpreter’s

stack trace, instead of the program’s stack trace. To address

this, we use different solutions for different interpreted lan-

guages. Java and PHP virtual machines offer built-in support

for generating stack traces [54, 55]. For Python, we developed

an eBPF-based profiler called PyPerf, which handles various

Python versions and provides end-to-end stack traces across

both Python code and the C/C++ native libraries it invokes.

PyPerf utilizes an eBPF probe in the Linux kernel to col-

lect stack traces from CPython, as shown in Figure 5. The

stack trace comprises: 1) a sequence of calls internal to

CPython, 2) a sequence of _PyEval_EvalFrameDefault calls,
and 3) a sequence of calls to native C/C++ libraries invoked

_start

……

_PyEval_Eval
FrameDefault

……

_PyEval_Eval
FrameDefault

C-lib-foo

……

System stack

CPython 
subroutines

Python 
subroutines

Native 
subroutines

Py-funX

…..

Py-funZ

Python virtual 
call stack (VCS)

_start

……

Py-funX

……

Py-funZ

C-lib-foo

……

Merged stack

Figure 5. How PyPerf reconstructs the stack trace.

by the Python program. Our key insight is that each _PyE-
val_EvalFrameDefault call in CPython’s C code maps pre-

cisely to a corresponding call in the Python code. This en-

ables us to reconstruct the end-to-end stack trace as follows.

CPython maintains a virtual call stack (VCS) for a Python

program, akin to the call stack in C programs. The VCS is

a linked list of frames, each containing information about

the source-code address of the corresponding Python sub-

routine. The head of the VCS is stored at a fixed location

within CPython. PyPerf’s eBPF probe walks through the

VCS, starting from its head, to reconstruct the call stack of

the Python program by mapping _PyEval_EvalFrameDefault
calls to subroutines recorded in the VCS.

PyPerf produces a precise end-to-end stack trace by merg-

ing 1) the native call stack from CPython, 2) the Python

code’s call stack as described above, and 3) the native call

stack of C/C++ libraries invoked by the Python code. In con-

trast, the state-of-the-art Python profiler, Scalene [8], can

only approximate the time spent in C/C++ libraries since its

Python-level profiling cannot reach into C/C++ code.
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Figure 6.Workflow of FBDetect.

Although Python 3.12 introduced stack-trace collection

support in October 2023 [24], FBDetect has required this

capability since 2017. Python 3.12 adds to the call stack a

framewith the corresponding Python function name for each

_PyEval_EvalFrameDefault call, enabling tools like Linux’s
perf to map _PyEval_EvalFrameDefault to Python functions.

However, this approach has several limitations. First, the

additional frame introduces significant overhead [56, 68],

which cannot be mitigated by sampling. Second, it may inter-

fere with Just-In-Time (JIT) optimizations, leading to further

performance degradation [68].

5 Regression Detection Algorithms
In this section, we present FBDetect’s detection algorithms,

starting with an overview and then providing detailed expla-

nations of FBDetect’s individual techniques.

5.1 Overview

We follow Figure 6 to provide an overview of FBDetect. In

the bottom left of the figure, profilers such as PyPerf period-

ically capture stack-trace samples on all servers (§4), which

are then converted to subroutine-level gCPU time series.

FBDetect periodically examines these time series within a

recent time window to detect regressions. The “short-term
regression detection” path in Figure 6 executes the following

steps in sequence:

1. The change point detector applies change point detec-

tion [3] to identify anomalies, which are regression can-

didates. (§5.2.1)

2. The went-away detector filters out regressions that dis-

appear spontaneously, like the one in Figure 1(c). (§5.2.2)

3. The seasonality detector applies trend analysis [17] to

filter out regressions caused by seasonality. (§5.2.3)

4. The SOMDedup clustering algorithm performs a fast, shal-

low analysis to efficiently deduplicate regressions likely

caused by the same change. (§5.5.1)

5. The cost shift detector filters out regressions resulting

from code refactoring that merely shifts cost between

subroutines, like the one in Figure 1(b). (§5.4)

6. The PairWiseDedup clustering algorithm performs a slower,

more thorough comparison to further deduplicate remain-

ing regressions. (§5.5.2)

7. Finally, root cause analysis is applied to each remaining

regression to pinpoint the specific code or configuration

change responsible for the regression. (§5.6)

The specific ordering of steps 2–6 is designed to execute

faster algorithms in the early steps to filter out as many

regressions as possible, thereby reducing computation in the

later, more resource-intensive steps.

For ease of operation, FBDetect runs on a common server-

less platform at Meta, scanning different time series in par-

allel. Overall, it utilizes capacity equivalent to hundreds of

servers, analyzing approximately 800,000 time series to de-

tect regressions across hundreds of services.

In the subsequent sections, we detail FBDetect’s individual

techniques outlined in Figure 6.

5.2 Short-Term Regression Detection

We define a regression as a shift in the mean of a time series.

Without loss of generality, we assume that an increase in

a metric’s value means a regression. There are two types

of regressions: a sudden change resembling a step function

and a gradual incremental change over a longer period. Ac-

cordingly, we have designed two separate algorithms for

short-term and long-term regression detection. The short-

term algorithm is more sensitive to sudden changes but is

carefully designed to filter out noisy, transient changes, while

the long-term algorithm is insensitive to sudden changes and

focuses on the long-term trend.
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To detect short-term regressions, we use a three-step pro-

cess: (1) The change-point detector identifies regression can-

didates. (2) The went-away detector filters out false-positive

transient regressions. (3) The seasonality detector further

filters out false-positive regressions caused by seasonality.

5.2.1 Change Point Detector. This detector applies the
Cumulative Sum (CUSUM) [6] and Expectation Maximiza-

tion (EM) [47] algorithms iteratively to identify change points.

This process continues until it converges at the change point

with the maximum likelihood of having different means

before and after the change point, or until it uses up the com-

putation time. Once a change point is identified, FBDetect

conducts a statistical hypothesis test to validate it:

• Null hypothesis H0: there is no change point in the time

series and there is only one mean 𝜇;

• Alternative hypothesis H1: there is one change point 𝑡 in

the time series, the mean before 𝑡 is 𝜇0 and after 𝑡 is 𝜇1.

FBDetect conducts the likelihood-ratio chi-squared test [75]

with the significance level of 0.01, and reports a regression

only if the null hypothesis is rejected.

Overall, we find change-point detection algorithms neces-

sary but insufficient for detecting small regressions in noisy

environments. Specifically, for transient issues like the one

in Figure 1(c), they either require a long time window to

filter them out as noise, which delays regression detection,

or a large threshold, which fails to catch small regressions.

This prompted us to introduce the went-away detector.

5.2.2 Went-away Detector. Filtering out transient regres-
sions is challenging, and our algorithm has undergone mul-

tiple iterations. In the first iteration, FBDetect conducted an

additional CUSUM analysis using the data after the change

point. The purpose was to find an inverse regression and

check whether its magnitude sufficiently compensates for

the original regression. However, this method was too sensi-

tive to transient issues after true regressions. For instance, if

the time series temporarily dips and then quickly recovers

after a true regression, this method would incorrectly filter

out this true regression.

In the second iteration, to improve robustness, we used

the average trend instead of a single change point. We added

a short-term trend analysis using the Mann-Kendall test [34,

45] to check whether the end result of a given regression

shows a decreasing trend, which might indicate the regres-

sion went away. However, a decreasing trend itself is insuffi-

cient, since the value needs to recover to the normal level

for the regression to be considered went-away. Therefore, if

the Mann-Kendall test shows a decreasing trend, FBDetect

further compares the end values of the regression with val-

ues in a historical window. Unfortunately, choosing the right

historical window turned out to be difficult. For example,

in Figure 7, if the algorithm happens to choose the window

with a spike as the baseline, it will mistakenly conclude that

the regression at the end of the time series is a false positive.

In practice, we found that this happens quite frequently.

In the third iteration, which is our current version, we

added an additional logic to further improve robustness. If

the values within the time window after a change point are

“very different” from those within the window after another

change point, we consider them to be caused by different

reasons. With this method, we can identify that, in Figure 7,

the regression at the end and the spike in the middle are

caused by different reasons.

For real-number values, determining whether they are

“very different” can be challenging, as all numbers differ to

some extent. To address this, FBDetect discretizes the time

series into a string representation using Symbolic Aggregate

approXimation (SAX) [43]. SAX divides the value range into

buckets, replacing values in each bucket with a correspond-

ing letter. For example, a time series like [1.1, 2.0, 3.1, 4.2,

3.5, 2.3, 1.1] can be represented as the string ‘abcdcba’, using

four buckets where ‘a’ represents [1, 2) and ‘b’ represents

[2, 3), and so on. SAX is configurable: among 𝑁 buckets, a

bucket is considered valid only if it contains at least 𝑋% of

the data points. We tested various combinations of 𝑁 and

𝑋 and settled on 𝑁=20 and 𝑋=3%, which proved robust to

outliers without missing obvious regressions.

After outlining the key ideas of the went-away detector,

we now present it formally. FBDetect marks a regression as

true if the following predicate evaluates to true:

NewPattern OR [SignificantRegression AND
LastingTrendAND (NOTRegressionGoneAway)].

The terms are defined as follows.

• NewPattern: This term checks if the post-regression

pattern significantly differs from historical patterns. If so,

FBDetect reports the regression as true. In the SAX string

representation, a letter is valid if its number of occur-

rences exceeds a predefined threshold. If most letters

in the post-regression SAX string are invalid, FBDetect

treats the post-regression time series as a new pattern

and reports a regression, unless the average value is lower

than the lowest valid bucket in historical data, indicating

no significant cost increase despite the new pattern.

• SignificantRegression: This term checks if the regres-

sion magnitude is significant. FBDetect considers the

regression significant if the largest letter in the post-

regression analysis window is greater than or equal to

Figure 7. Catching the regression at the end.
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the largest valid letter pre-regression. Additionally, FB-

Detect verifies that the 90th percentile of values after

the change point exceeds both the 95th percentile of the

historical window and the 90th percentile of the previous

day, confirming the regression’s significance.

• LastingTrend: This term assesses whether a regression

trend persists after the change point. FBDetect performs

the Mann-Kendall test on both the post-regression and

the entire analysis window to detect monotonic upward

trends. If a trend is found, FBDetect uses Theil-Sen’s

Slope Estimator [69] to measure its magnitude and inter-

cept. The window with the lower slope is used to avoid

over- or under-estimation. FBDetect then compares the

slope to a regression threshold, calculated as the Median

Absolute Deviation [41] with a normality constant of

1.4826, and applies a regression coefficient (default 1.5)

for sensitivity. The final regression threshold is set to

coefficient × median × 1.4826.
• RegressionGoneAway: This term checks whether the

regression has gone away in the last few data points,

serving as the final sanity check.

The combination of these terms form a robust predicate that

helps FBDetect effectively filter out transient issues.

5.2.3 Seasonality Detector. This detector removes sea-

sonality from the time series and then checks if the regres-

sion still exists. To determine if seasonality is present in the

time series, FBDetect applies an autocorrelation function and

checks if the correlation is significant. If so, FBDetect runs

the Seasonal and Trend decomposition using Loess (STL)

algorithm [17] to decompose the time series into three parts:

seasonality, trend, and residual. FBDetect then removes

seasonality and computes the difference between the me-

dian of the sum of trend and residual before the CUSUM

change point and the median after the point. Finally, FBDe-

tect normalizes the difference by the standard deviation of

the residual and calculates the pseudo ‘z-score’. If the ‘z-

score’ is smaller than a given threshold, FBDetect filters out

the regression as a false positive caused by seasonality. FBDe-

tect computes the z-score in both the analysis window and

the extended window, and requires both to be smaller than

the threshold. Overall, we find that this method can remove

most false positives caused by seasonality while introducing

very few false negatives.

Discussion of alternatives. As an alternative to the STL

algorithm, we also experimented with using the moving-

average algorithm [10] to handle seasonality. We found that

STL is superior because it is sensitive to slight changes in

seasonality while being robust against sudden changes. .

5.3 Long-term Regression Detection

The long-term regression detection algorithm consists of

three steps: seasonality decomposition, regression detection,

and change-point detection. FBDetect first uses the STL al-

gorithm to decompose the original time series into season-

ality, trend, and residual. FBDetect then conducts regres-

sion detection on the trend time series alone to determine

if a regression is present. If so, FBDetect runs change-point

detection to locate the change point. The following presents

these three steps in detail.

In the regression-detection step, FBDetect calculates the

means at the start of the analysis window and the historical

window, and uses the bigger one as the baseline. Similarly,

FBDetect computes the means at the end of the analysis

window and the extended window, and uses the smaller one

as the current value. If the difference between current

and baseline is above a given threshold, FBDetect reports it

as a long-term regression.

In the change-point detection step, FBDetect checks if the

regression represents a gradual change by running a linear

regression model to fit the normalized trend and calculat-

ing the root mean square deviation (RMSE). If the RMSE is

smaller than a given threshold, FBDetect sets the change

point at the beginning of the trend. Otherwise, FBDetect

uses the normal loss and dynamic programming search [72]

to find the change point. It aims to identify the partition

point that minimizes the variance on both sides, with the

partition point being the change point.

The long-term detection algorithm is similar to the short-

term one but has several key differences. First, the long-term

algorithm runs seasonality detection as the first step, while

the short-term one runs seasonality detection as the last

step. This is because seasonality detection smooths the time

series, which is beneficial for detecting gradual regression

but harmful for detecting sudden changes. Moreover, the

long-term detection algorithm does not use the went-away

detector, as it already focuses on long-term patterns.

5.4 Cost-shift Detector

Subroutine-level metrics help detect small regressions by

reducing variance but may cause false positives due to cost

shifts from code refactoring, such as moving code from one

subroutine to another. The cost-shift detector utilizes the

concept of cost domains to help filter out such false posi-

tives. A cost domain is a group of subroutines within which

a cost shift is likely to occur. FBDetect provides several de-

fault detectors for common cost domains. For instance, one

detector analyzes stack traces to find upstream callers of a

subroutine and treats them as a cost domain. Another treats

all subroutines within the same class as a cost domain. Ad-

ditionally, a detector uses user-defined metadata to group

subroutines with the same metadata prefix, while another

considers endpoints with matching name prefixes. A further

detector groups all subroutines modified by a code commit.

Finally, FBDetect allows developers to create custom detec-

tors for specific cost domains.

Given a regression and its associated cost domain, the cost-
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shift detector performs the following checks to determine

whether a regression is caused by a cost shift:

• If the domain does not exist before the regression, e.g., a

new subroutine, the regression is not a cost shift within

the domain.

• If the domain’s cost is significantly larger than the re-

gression’s cost change, we exclude the domain from the

cost-shift detector. For instance, when examining a domain

with a 20% CPU cost to investigate a 0.005% CPU regres-

sion, the domain’s seasonal pattern alone could obscure

the regression’s effect.

• If the domain’s cost change is negligible compared to the

regression’s cost change, we consider the regression a cost

shift within the domain. For example, if a class’s method

𝑋 ’s cost increases significantly while the total cost of all

the class’s methods hardly changes, it is likely that the cost

just shifts from another method𝑌 in the class to method𝑋 .

The cost-shift detector runs between the deduplication steps,

SOMDedup and PairwiseDedup, which will be explained

in the next section. This execution order prioritizes faster

algorithms like SOMDedup to filter out regressions early,

minimizing the computational load in the later, slower steps.

5.5 Regression Deduplication

FBDetect deduplicates regressions caused by the same code

or configuration change. For instance, a regressed subroutine

may trigger regressions in all its upstream callers. Addition-

ally, a single change might impact various metrics, such as

CPU usage and throughput.

While classic clustering algorithms can deduplicate 𝑛 re-

gressions by comparing each pair with a complexity 𝑂 (𝑛2),
Self-Organizing Maps (SOM) [36] offer a more scalable so-

lution, with a complexity of 𝑂 (𝑛). To reduce running time,

FBDetect employs a two-step approach for regression dedu-

plication. First, SOMDedup uses SOM to deduplicate metrics

of the same type (e.g., different subroutines’ gCPUs) within

the same analysis window, often reducing regressions by two

orders of magnitude. For example, it addresses cases where

multiple subroutines call the same regressed subroutine. The

remaining regressions are then processed by PairwiseDedup,
which applies a pairwise-comparison clustering algorithm

to further merge regressions across different metrics (e.g.,

gCPU and throughput) and time windows.

5.5.1 SOMDedup. SOMDedup is optimized for speed. It

uses SOM to map high-dimensional features into a lower-

dimensional space and merge nearby items into a cluster.

Each regression is represented as an item, and the features

used for clustering include typical time-series metrics like

Fourier frequencies, variance, and change points, along with

several distinguishing features we have introduced.

One distinguishing feature is candidate root causes. Find-

ing the exact root cause of a regression is the ultimate goal of

FBDetect; therefore, the exact root cause is unknown at this

step. However, with the information already available, FBDe-

tect can narrow down the potential root causes and use them

as a feature. Specifically, FBDetect finds a list of potential

root causes for a regression by searching for changes that

modify the regressed subroutine and are introduced right

before the regression starts. FBDetect encodes this list as a

bitmap feature, where each bit represents whether a change

may be the root cause of the regression.

Another distinguishing feature is the metric ID, a concate-

nation of the subroutine name and metric name. Regressions

with similar metric IDs are likely to share the same root

cause. To avoid the scalability issues of pairwise compar-

isons, we convert metric IDs into integers using TF-IDF [66]

with 2- and 3-gram lengths.

After grouping related regressions using SOM,within each

group, FBDetect presents the regression with the highest

ImportanceScore to developers as the representative.

ImportanceScore = 𝑤1 × RelativeCostChange +
𝑤2 × AbsoluteCostChange +
𝑤3 × (1 − PopularityScore) +
𝑤4 × PotentialRootCauseFound

Here 𝑤𝑖 are tunable weights with default values: 𝑤1=0.2,

𝑤2=0.6, 𝑤3=0.1, 𝑤4=0.1. RelativeCostChange and Abso-

luteCostChange represent the magnitude of change in

the regression; we aim to select a representative regression

with significant changes. PopularityScore indicates the

probability of the regressed subroutine appearing in a ran-

dom stack trace sample; we aim to avoid widely invoked

subroutines. PotentialRootCauseFound is a boolean in-

dicating whether any potential root causes are found; we

prefer regressions with known root causes.

Discussion of alternatives. To identify a scalable cluster-

ing algorithm, we considered several alternatives, including

K-Nearest Neighbors (KNN) [18] and hierarchical cluster-

ing [28]. Ultimately, we chose SOM due to its robustness

in setting hyperparameters. Each algorithm has hyperpa-

rameters that significantly impact its effectiveness, such as

the number of clusters in KNN, the cut-level in hierarchical

clustering, and the grid size in SOM.

For KNN and hierarchical clustering, automatically setting

these hyperparameters to be robust across diverse workloads

proved challenging. Determining the number of clusters (K)

in KNN beforehand is impractical due to the varying number

of regressions, and iterating over different K values is compu-

tationally expensive. Similarly, the cut-level in hierarchical

clustering depends on the data distribution. We attempted

to automate cut-level selection by testing different values

and evaluating their Silhouette scores [62], which measure

clustering quality. However, we found that these scores often

do not converge to an optimal value.

In contrast, SOM’s hyperparameter can be set in a robust

way. Using a grid size of 𝐿 × 𝐿, where 𝐿 = ⌈ 4

√
𝑛⌉ and 𝑛 is
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the number of regressions, consistently yields good results

across diverse workloads. Therefore, we chose SOM.

5.5.2 PairwiseDedup. The second pass of regression dedu-
plication, PairwiseDedup, is optimized for quality by max-

imizing deduplication. While SOMDedup focuses on dedu-

plicating regressions within the same analysis window and

with the same type of metrics, PairwiseDedup aims to dedu-

plicate regressions across different analysis windows and

with different types of metrics such as gCPU and throughput.

PairwiseDedup takes as input a list of representative re-

gressions newly identified by SOMDedup and filtered by

cost-shift analysis, along with a list of past representative re-

gressions already grouped by prior rounds of PairwiseDedup

execution. It compares each new regression with existing

groups, merging it into the most similar group if above a

threshold or creating a new group otherwise. While Pair-

wiseDedup offers higher accuracy than SOMDedup, its scal-

ability is limited by pairwise comparisons.

PairwiseDedup computes similarity scores for a set of fea-

tures between a new source regression and a target group.

It then applies user-defined rules based on these scores to

determine whether the source should be merged into the

target. Users can define the metrics to consider for merge

(e.g., gCPU and throughput), the similarity threshold for each

feature, and how to combine multiple features to make the

final decision. For example, the merge may require all or a

subset of feature scores to exceed certain thresholds. If the

source can be merged into multiple targets, we choose the

one with the highest aggregate feature scores.

Below are some examples of the most useful features for

which we compute similarity scores:

• Pearson time series correlation coefficient [7]. We compute

the coefficient between the source regression and each

regression in the target group, and use the maximal value.

• Text cosine similarity [64]. We compute the similarity be-

tween the metric ID of the source regression and the

metric ID of each regression in the target group, and use

the maximal value.

• Stack-trace overlap. Since multiple subroutines may ap-

pear in one stack-trace sample, the sample can be used to

calculate gCPU for all these subroutines. The stack-trace-

overlap feature measures the percentage of shared samples

used for calculating two subroutines’ gCPU. If the target

group consists of multiple time series, we use the union

of their stack traces to compare with those of the source.

5.6 Root Cause Analysis

We define the root cause of a regression as the specific code

or configuration change causing it. For example, tens of

thousands of developers write code on FrontFaaS, leading

to hundreds or even thousands of changes per release. As a

result, identifying the root cause can be challenging.

To identify the root cause of a regression, FBDetect gen-

erates a set of candidates by examining code or configura-

tion changes deployed immediately before the regression

occurred. It then ranks these candidates based on a set of

weighted factors that measure the candidates’ relevance to

the regression. Finally, developers are presented with these

ranked candidates to guide their investigation.

Below are the commonly used factors that measure the

relevance between a candidate change and a regression.

Without loss of generality, our description focuses on code

changes but can be applied to configuration changes as well.

Subroutine gCPU. For services using stack-trace sampling,

this factor measures the fraction of the reported regression

in gCPU that can be attributed to the subroutines affected by

a code change. We illustrate this using an example. Suppose

a regression in subroutine 𝐵’s gCPU is detected. Table 2 lists

the stack-trace samples that contain 𝐵, where 𝐴 to 𝐺 are

subroutines and 𝐴->𝐵 means 𝐴 invokes 𝐵. The gCPU of 𝐵 is

0.09 before the regression and 0.14 after the regression, as

shown in the last row of Table 2. Therefore, 𝐵’s regression

magnitude is R=0.14-0.09=0.05.
Suppose a code change modifies subroutines𝐴 and 𝐸. The

stack-trace samples involving 𝐴 or 𝐸 are 𝐴->𝐵->𝐶 , 𝐵->𝐸-

>𝐹 , and 𝐵->𝐸->𝐷 . The gCPU before the regression for these

three samples is 0.01+0.02+0.04=0.07. The gCPU after the

regression for these three samples is 0.02+0.03+0.06=0.11.

Therefore, among B’s samples, those involving𝐴 and 𝐸 cause

a regression magnitude of L=0.11-0.07=0.04. The fraction

of the regression in 𝐵 that can be attributed to this code

change (i.e., 𝐴 and 𝐸) is L/R=0.04/0.05=80%. A higher value

indicates the change is more likely to be the root cause.

Text similarity. Text similarity can help identify the root

cause. For example, suppose FBDetect detects a regression

in subroutine foo and cannot find code changes that directly

modify it. However, there may be another code change with

a description like “loosening constraints for foo.” We can

use this information to rank that change higher than others.

Concretely, FBDetect computes text similarity between a re-

gression and a code change by tokenizing both into feature

vectors. The regression vector is based on timing, metric

name, metric type, stack traces (if available), and other fac-

tors. The code change vector is based on the descriptive title,

summary, file name, change content, and more. FBDetect

Stack-trace

samples

gCPU before

regression

gCPU after

regression

A->B->C 0.01 0.02

B->E->F 0.02 0.03

D->B->C 0.02 0.02

B->E->D 0.04 0.06

G->B->D Does not exist 0.01

Total 0.09 0.14

Table 2. Example of gCPU changes involving subroutine 𝐵.
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measures relevance as the cosine similarity between these

feature vectors.

Time series correlation. A service may record a time series

that does not directly reflect its performance but indicates

a certain setup of the service, such as which algorithm is

being used for processing requests. Since such metrics do

not represent performance, FBDetect cannot directly run

regression detection on them. However, if the time series of

such a metric strongly correlates with a regression, it may

indicate a root cause. We compute the Pearson correlation

between the time series for such a metric and the time series

for a found regression. The higher the correlation coefficient,

the more likely the change caused the regression.

6 Evaluation
Our evaluation answers the following questions:

• Among many techniques included in FBDetect, what

is the breakdown of each technique’s contribution to

filtering out spurious performance anomalies?

• Howmany false positives and false negatives are reported

by FBDetect?

• What is the accuracy of FBDetect’ root cause analysis?

• Does FBDetect indeed catch regressions as small as 0.005%?

• How does FBDetect compare with prior art?

• Does PyPerf’s stack-trace sampling add high overhead?

6.1 Contribution of FBDetect’s Individual Techniques

Due to high noise levels in production environments, service

performance metrics frequently exhibit anomalies, many of

which are false positives. This section demonstrates how

each of FBDetect’s techniques reduces the number of perfor-

mance anomalies requiring developers’ attention.

Table 3 shows, over one month for several workloads, the

number of remaining performance anomalies after being

filtered by FBDetect’s different techniques in sequence. We

use FrontFaaS as an example to demonstrate how to read the

table. Running the short-term regression detection algorithm

for FrontFaaS detects 3.96 million change points. The value

of “1/3536” at the intersection of the row “after SOMDedup”
and the column “FrontFaaS short-term regression” means that,

after executing all the steps between “went-away detection”
and “SOMDedup,” the number of remaining performance

anomalies is filtered down to
1

3536
of the original 3.96 million

change points detected.

As shown in Table 3, FBDetect reduces the number of

performance anomalies that developers need to investigate

by three to four orders of magnitude, greatly boosting pro-

ductivity. Among the techniques, the went-away detector

is the most effective, filtering out 99.7% of detected change

points. The seasonality detector further removes 22% of the

regressions output by the went-away detector. Additionally,

SOMDedup filters out 72%, cost-shift analysis filters out 34%,

and PairwiseDedup filters out 49% of their respective in-

put regressions. Overall, short-term change points are more

prevalent and noisier than long-term ones, necessitating

more aggressive filtering.

6.2 False Positive and False Negative

Evaluating FBDetect’s false positives (i.e., reporting regres-

sions when they do not actually exist) and false negatives

(i.e., real regressions missed by FBDetect) faces several chal-

lenges. First, it is difficult to rely on tens of thousands of

developers consistently to perform manual classification.

Moreover, sometimes the ground truth is unknown. For ex-

ample, if a true 0.005% regression is missed by FBDetect, it

is less likely to be caught by developers as well, so it will

remain unknown. Despite these challenges, we use different

data to corroborate the evaluation, focusing on FrontFaaS,

because it involves tens of thousands of developers and its

manually tagged data is more complete than other services.

False negative. Given FBDetect’s aggressive filtering of

performance anomalies by three to four orders of magni-

tude (Table 3), false negatives could be a concern, as many

true regressions could be mistakenly filtered out. To eval-

uate the false negatives of FBDetect, we use FrontFaaS’s

performance-related incidents in production as the ground

truth and evaluate how many of them should have been

caught by FBDetect. This ground truth, though not theoreti-

cally complete, serves as a high bar, as FrontFaaS is closely

monitored by a dedicated team, and all of its incidents are

rigorously recorded and reviewed.

For the entire year of 2023, only four performance-related

incidents were recorded for FrontFaaS, despite its highly dy-

namic and incident-prone environment (§3)—thousands of

code commits daily and automated code deployment every

three hours. This low incident count is not because Front-

FaaS rarely has performance regressions; each year, FBDe-

tect catches regressions in FrontFaaS that, if left unchecked,

would waste more than half a million servers.

Among the four performance incidents, two were detected

by FBDetect but were not acted upon by developers in time.

The third incident occurred because the developer did not

configure the regressed metric to be exported to FBDetect,

and the last one was due to a capacity-management issue

unrelated to code or configuration changes. Overall, for all of

FrontFaaS’s performance incidents in 2023, FBDetect did not

miss any that it was supposed to catch. However, this does

not imply that FBDetect never misses regressions larger than

0.005% for FrontFaaS; it only means that the missed regres-

sions are not significant enough to be noticed by developers.

We further searched all site incidents in the past three

years (not limited to FrontFaaS) and found a single one

caused by FBDetect’s false negative. In this incident, FBDe-

tect’s cost-shift detector mistakenly filtered out a regression
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Execution sequence

of FBDetect techniques

FrontFaaS PythonFaaS AdServing

Short-term

regression

Long-term

regression

Short-term

regression

Short-term

regression

Long-term

regression

# Change points detected (§5.2.1 and §5.3) 3.96M 1.09K 324.85k 239.67K 1.9K

After went-away detection (§5.2.2) 1/365 —— 1/82 1/47 ——

After seasonality detection (§5.2.3) 1/468 —— 1/111 1/58 ——

After threshold filtering (Table 1) 1/769 1/1.03 1/295 1/165 1/1.03

After SameRegressionMerger 1/861 1/9.6 1/500 1/320 1/7

After SOMDedup (§5.5.1) 1/3536 1/28 1/1775 1/776 1/18

After cost-shift analysis (§5.4) 1/6092 1/73 1/4010 1/776 1/18

After PairwiseDedup (§5.5.2) 1/18857 1/91 1/5240 1/1180 1/30

Total 1/7779

Table 3. Effectiveness of individual techniques in filtering out spurious change points. All non-first-row numbers are relative

ratios to those in the first row. PythonFaaS skips long-term regression detection, while AdServing skips cost-shift analysis.

SameRegressionMerger deduplicates the same regression that shows up in multiple overlapping analysis windows.

and caused a large service to experience a 0.015% error rate.

Since then, we have improved the detector’s algorithm and

tuned its threshold.

False positive. Surprisingly, false positives are not a major

concern for FBDetect. Over a one-month evaluation period,

FBDetect reported 217 regressions for FrontFaaS. At this rate,

and with tens of thousands of developers writing code for

FrontFaaS (and thousands of code commits daily), a Front-

FaaS developer, on average, will be assigned a ticket by FB-

Detect to investigate a regression only once every four years.

This ideal situation is thanks to FBDetect’s capability of ag-

gressively filtering performance anomalies by three to four

orders of magnitude before reporting them to developers.

Among the 217 regressions reported by FBDetect, devel-

opers explicitly confirmed either true regressions or false

positives for only 70 of them, marked another 123 as re-

solved, and did not act on the remaining 24.

Among the 70 confirmed cases, 49 are true regressions

and 21 are false positives. Assuming the same ratio (49:21)

holds for the 217 reported regressions, a FrontFaaS developer

would only need to investigate one false-positive regression

approximately once every 13 years. The 21 false positives

include 1 duplicate regression that was not merged, 15 cost

shifts that were not filtered out, 1 temporary spike missed by

the went-away detector, and 4 miscellaneous cases. Given

that 15 of the 21 false positives are due to cost shifts, this

will be a focus of future research.

For the 123 regressions that are marked as resolved by

developers, unfortunately, there is no ground truth regarding

whether they are true regressions or false positives. Data

suggests that many of them are likely true regressions. For

example, for 24 of them, FBDetect’s regression report pro-

vided root causes, and developers confirmed the accuracy

of those root causes, even though those regressions are still

marked as resolved instead of true regressions. The authors

of the paper, not the FrontFaaS developers, manually inves-

tigated some resolved cases and found that many of them

match well with the same magnitudes and similar timings of

regressions recorded by Meta’s canary-test tool, which is a

strong indicator that they are true regressions caused by code

changes. However, since we lack explicit confirmation from

developers, we still consider the ground truth unknown.

Some of the resolved cases simply went away without

any data indicating how they were fixed. This suggests that

FBDetect’s went-away detector might be able to filter them

out if longer extended windows were used (Figure 4). How-

ever, this would delay the timeliness of regression detection.

This trade-off is challenging and requires future research.

6.3 Root Cause Analysis

In this section, we evaluate the accuracy of FBDetect’s root

cause analysis for FrontFaaS. Given a regression, FBDetect

suggests root-cause candidates only if its confidence in the

recommendation is sufficiently high; otherwise, it will not

suggest any root cause. Out of the 217 regressions reported by

FBDetect over a one-month period, FBDetect suggested root

causes for 75 of them. Of these, 71 were confirmed correct

by developers, meaning the real root cause was among the

top-three change candidates suggested by FBDetect.

Among the 142 regressions for which FBDetect did not

suggest root causes, developers manually root-caused an

additional six. While the success rate of FBDetect’s root

cause analysis seems mediocre (75/217=35%), even devel-

opers’ manual efforts could only marginally improve it to

(75+6)/217=37%. This indicates that root cause analysis in

complex production environments is challenging. Despite

the limitations, FBDetect still significantly improves devel-

oper productivity, as the majority of successful root cause

analysis is automated by FBDetect, with developers con-

tributing only an additional 2%. Moreover, in most cases,

FBDetect’s behavior of not pinpointing a single root cause

is actually appropriate, as explained below.

To understandwhy FBDetect does not pinpoint root causes
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for certain regressions, we manually investigated 61 regres-

sions marked as true regressions by developers but not root-

caused by FBDetect. Note that, to find a sufficient number of

such cases, these 61 cases are beyond the time period covered

by Table 3. Below is a breakdown of these 61 cases based on

why they were not root-caused by FBDetect:

• 28 cases do not have a clear root cause. Themost common

reason is that the regression is caused by a new feature

release, which is expected to consume more resources.

Moreover, the new feature involves many code changes,

and no single change dominates the regression. There-

fore, FBDetect’s behavior of not pinpointing a single root

cause is appropriate.

• 5 cases are caused by failures in production. As they are

not caused by code or configuration changes, it is appro-

priate for FBDetect not to report root causes for them.

• 11 cases are caused by changes not exported to FBDetect.

Therefore, it is appropriate for FBDetect not to report root

causes for them. Future enhancements require FBDetect

to be integrated with a broader set of change sources.

• 5 cases have their root causes reported by FBDetect, but

they are not ranked among the top three candidates.

• 12 cases have their root causes considered by FBDetect,

but they are filtered out because their relevance scores

fall below certain thresholds.

After analyzing these cases, we conclude that the success

rate of FBDetect’s root cause analysis is significantly higher

than it initially appears (35%). Only the last two categories

represent true failures of FBDetect’s algorithm. Assuming

the two periods we investigated (the period reporting 217

regressions and the period reporting 61 regressions not root

caused by FBDetect) have the same failure rate, and excluding

the 11 cases caused by changes not exported to FBDetect,

we estimate the true failure rate of FBDetect’s root cause

analysis to be only (1-35%)*17/(61-11)=22%.

6.4 Catching Small Regressions

FBDetect is effective at catching small regressions, as shown

in Table 4, where “All” means all regressions reported by

FBDetect, and “TR” and “FP” mean true regressions and false

positives explicitly confirmed by developers. The smallest

true regression is indeed 0.005% as expected, while the largest

is 3.9%. The difference in distributions between true regres-

sions and all regressions is minor, whereas their difference

with respect to false positives is more pronounced.

One might expect that for the tiny regressions between

0.005% and 0.01%, FBDetect’s false positive rate would be

higher as they are more likely to be caused by noise. How-

ever, the data shows that the false positive rate is not higher

for tiny regressions, because the P10 for all regressions, true

regressions, and false positives are nearly identical. Inter-

estingly, the reported largest regressions tend to be false

Smallest P10 P50 P90 P99 Largest

All 0.005% 0.010% 0.043% 0.232% 0.948% 15.094%

TR 0.005% 0.011% 0.048% 0.241% 0.809% 3.862%

FP 0.006% 0.012% 0.062% 0.442% 4.003% 15.094%

Table 4. Magnitude of detected regressions (TR=true regres-

sions; FP=false positives). The 0.01% cell at the intersection

of the “All” row and the “P10” column means that the 10th

percentile of all regressions detected by FBDetect is 0.010%.

positives. As discussed in §6.2, false positives are mostly cost

shifts, indicating an area for future research.

6.5 Comparison with Yahoo’s EGADS

We compare FBDetect with Yahoo’s EGADS [39], which of-

fers multiple anomaly detection algorithms. The test data

consists of a random set of 107 time series where FBDetect

reported regressions and around 35K time series where FB-

Detect reported no regressions. Manual analysis of the 107

positive cases reveals 76 true positives and 31 false posi-

tives. We report the false positive rate (i.e., the fraction of

the “35K+31” true negatives classified as positives) and the

false negative rate (i.e., the fraction of the 76 true positives

classified as negatives).

FBDetect’s false positive rate is 31/(35K+31)=0.00088. Since

FBDetect has almost no false negatives based on the results

in §6.2, we assume its false negative rate is zero. FBDetect’s

false-positive and false-negative rates are shown in Figure 8.

The EGADS algorithms have sensitivity parameters that

can be tuned to reduce either false positives or false nega-

tives, but not both. We tune these parameters and show the

tradeoff in Figure 8. For a fair comparison, EGADS uses the

same historical timewindow as FBDetect but combines FBDe-

tect’s analysis and extended windows as EGADS’s analysis

window. EGADS struggles with transient issues like the one

in Figure 1(c) because using a large threshold to filter them

would miss small regressions, while using a small threshold

would incorrectly flag many of them as regressions.

Given 76 true positive cases in the test data, if an algo-

rithm reports 760 or more positive cases for developers to

investigate manually, over 90% of these investigations would
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Figure 8. EGADS’s algorithms cannot simultaneously re-

duce both false negatives and false positives.
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be futile, eroding developer’s trust in the algoritm. Thus,

we require a false positive rate below 760/(35K+31) ≈ 0.02.

Among the EGADS algorithms in Figure 8, only “EGADS

algorithm 1” can meet this false positive rate, but at the cost

of a 0.84 false negative rate, meaning it would miss 84% of

true regressions. This shows that EGADS algorithms are

ineffective in simultaneously achieving both low false posi-

tives and low false negatives. In contrast, with the help of

the went-away detector, FBDetect catches nearly all small

regressions without introducing many false positives.

6.6 PyPerf Profiling Overhead

To measure PyPerf’s overhead in collecting stack traces

for Python programs, we created a CPU-intensive micro-

benchmark that repeatedly serializes a large data structure,

compresses it, and writes it to a file. We compare its through-

put with and without PyPerf.

PyPerf’s sampling rate for PythonFaaS is one sample per

server every 30 minutes. At this rate, we do not observe any

noticeable overhead on the micro-benchmark. To understand

the worst-case scenario, we configured PyPerf to collect one

sample per server per second. This is the highest rate used

in production and is only applied to the smallest services

that run on just a few servers to collect sufficient samples.

At this sampling rate, PyPerf reduces the throughput of the

micro-benchmark by about 0.8%, which is rather moderate.

Moreover, note that the overhead for collecting stack traces

for Python programs is higher than for C/C++ programs.

7 Related Work
Performance testing and monitoring. Performance re-

gression can be detected before production [32, 46, 84] or

during production [2, 25, 40, 76]. ServiceLab [14] and FBDe-

tect are representatives for these two categories, and they are

used at Meta in complementary ways. Due to their different

operating environments, they differ in major ways: 1) Ser-

viceLab controls its testing environment, such as selecting

testing servers to reduce variance, whereas FBDetect have

no such control and must rely on subroutine-level measure-

ments and a larger number of samples to manage higher

variance. 2) ServiceLab assumes a stationary environment

and does not need FBDetect ’s complex techniques, such

as the went-away detector and trend analysis, for handling

non-stationary conditions. 3) ServiceLab faces the challenge

of faithfully mirroring interdependent production services in

its testing environment, whereas FBDetect’s in-production

monitoring approach avoids this problem.

Change point and seasonality detection. Change point
detection tries to identify points where the statistical proper-

ties of a time series change [5, 6, 11, 16, 26, 33, 44, 58, 81, 85,

86]. Seasonality detection tries to identify the presence of

regular and periodic changes [17, 50, 65, 70]. Several indus-

trial systems have adopted these methods [20, 22, 49, 73, 74].

FBDetect further introduces the went-away detector to filter

out transient issues, which can account for up to 99.7% of all

regressions in our production environment.

Stack trace sampling. Existing tools can collect stack traces
for services written in C/C++ [53], Java [27, 54], Python [8,

15, 23, 24, 35, 52, 59–61, 71], Go [19], Ruby [31], etc. To our

knowledge, PyPerf is the first profiler capable of deriving a

precise end-to-end stack trace across a Python program and

the C/C++ libraries it invokes.

Root cause analysis. Prior works have attempted to local-

ize a bug to lines of code [29], files [37, 38, 48, 51, 57, 63, 78,

80, 82], commits [9, 77, 79], or deployments [42]. They also

rely on stack traces and text similarity to find the correspond-

ing locations. Recently, several works have leveraged large

language models for the same purpose [1, 13, 83]. Many of

these works require a user-written bug report or at least an

error message to start with. FBDetect does not require such

information. Furthermore, none have tried to find the root

cause of a tiny performance regression.

8 Conclusion and Future Work
We have presented FBDetect, an in-production performance-

regression detection system. It saves millions of servers each

year and reduces the number of performance anomalies re-

quiring developers’ attention by three to four orders of mag-

nitude. Our contributions include the went-away detector,

cost-shift detector, and several algorithms that work in con-

cert to catch regressions as small as 0.005% in noisy produc-

tion environments.

A major direction for future work is regression detection

for GPU training. Currently, GPU profiling is lessmature, and

the synchronous training pattern significantly differs from

the traditional microservice pattern. Additionally, we aim to

reduce the false-positive rate for traditional services, with

a focus on improving cost-shift analysis. Planned capacity

changes also trigger false positives, so we plan to correlate

regressions with these known changes. Finally, potential

new application domains for FBDetect include detecting

anomalies in site and hardware reliability.
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A Appendix
Following the practice at SOSP’24, we declare that the ap-

pendix was not peer reviewed by the SOSP committee.

A.1 Leveraging the Law of Large Numbers

The Law of Large Numbers (LLN) [21] states that given a

random variable 𝑥 with a finite mean 𝜇 and variance 𝜎2
,

as the sample size 𝑛 approaches infinity, the sample mean

converges to 𝜇. Lete Variance(𝑥) denote the variance of 𝑥 .
We have:

𝑥 =
1

𝑛

𝑛∑︁
𝑖=1

𝑥𝑖 and lim

𝑛→∞
𝑥 = 𝜇 (3)

Variance(𝑥) = 𝜎2/𝑛 and lim

𝑛→∞
Variance(𝑥) = 0. (4)

Suppose we introduce a code change and want to deter-

mine whether its impact on a performance metric is sta-

tistically significant by comparing two groups of samples

collected before and after the change. According to the LLN,

as the sample size increases, we can more accurately infer

the two groups’ means 𝜇1 and 𝜇2. Thus, even a small dif-

ference between 𝜇1 and 𝜇2 can be detected, as reflected in

Expression 1, where lim𝑛→∞ Δthreshold=0. The LLN can also

explain why the noise in Figures 2 and 3 decreases as the

number of servers (𝑚) increases.

Although the LLN explains why minor regressions are

detectable with a large number of samples, it is crucial to

recognize that both the LLN and Expression 1 assume station-

ary random variables and do not account for non-stationary,

transient issues like the one in Figure 1(c). Therefore, pro-

duction realities are more challenging.

A.2 Calculating the Detection Threshold

While the Law of Large Numbers provides valuable intuition,

a direct analysis of FBDetect would be ideal. However, its

complexity renders precise analysis impractical. As an alter-

native, we examine a simpler yet representative problem, as

described below, to gain meaningful insights.

Suppose we introduce a code change and want to deter-

mine its impact on a performance metric. Let the two groups

of samples collected before and after the code change have

population means 𝜇1 and 𝜇2, population variances 𝜎2

1
and

𝜎2

2
, sample sizes 𝑛1 and 𝑛2, sample means 𝑥1 and 𝑥2, and

sample variances 𝑠2
1
and 𝑠2

2
, respectively. For simplicity, as-

sume the two groups have identical population variances

(𝜎2

1
= 𝜎2

2
= 𝜎2

) and identical sample variances (𝑠2
1
= 𝑠2

2
= 𝑠2).

We use Student’s t-test [21] to examine two hypotheses:

• H0: 𝜇1 = 𝜇2 (i.e., there is no performance difference).

• H1: 𝜇1 ≠ 𝜇2 (i.e., there is a performance difference).

To reject H0, the t-statistic must exceed a threshold:

𝑡 =
𝑥1 − 𝑥2

𝑠

√︃
1

𝑛1

+ 1

𝑛2

≥ 𝑇critical, (5)

where 𝑇critical is a threshold determined by 𝑛1, 𝑛2, and the

required probability (e.g., 99%) of making a correct decision.

In FBDetect, 𝑛1 ≫ 𝑛2 because we prioritize detecting regres-

sions quickly after a change, and thus do not have time to

collect as many samples as were collected before the change.

Thus, as an approximation, we can eliminate the
1

𝑛1

term in

Expression 5, which simplifies to:

𝑡 ≈ √
𝑛2 (𝑥1 − 𝑥2)/𝑠 ≥ 𝑇critical. (6)

Reusing the symbol in Expression 1, let Δthreshold be the min-

imal value of 𝑥1 − 𝑥2 that satisfies Expression 6. We obtain

Δthreshold ≈
√︁
𝑠2/𝑛2 𝑇critical. (7)

This simplified analysis provides the basis for Expression 1.

While it does not fully capture FBDetect’s complexity, the

relationship Δthreshold ∝
√︁
𝜎2/𝑛 generally applies to methods

comparing two sample groups to detect changes.

A.3 Subroutine-level Measurements using gCPU

We demonstrate that, similar to Expression 2, subroutine-

level measurements using the gCPU metric also reduce vari-

ance, enabling detection of small regressions.

We first define the following notations. Let 𝑟 be a sub-

routine in a Linux process, with random variables 𝑋𝑟 and

𝑋𝑃 representing the CPU usage of 𝑟 and the Linux process,

respectively. Let 𝜇𝑟 and 𝜇𝑃 denote their means, and 𝜎2

𝑟 and

𝜎2

𝑃
denote their variances. Define gCPU𝑟 = 𝑋𝑟/𝑋𝑃 .

Assume that the Linux process consists of 𝑘 independent

subroutines like 𝑟 , so
𝜇𝑟
𝜇𝑃

= 1

𝑘
and 𝜎2

𝑟 =
𝜎2

𝑃

𝑘
. Based on the

approximation for the variance of a ratio [4], we have:

Variance(𝑔𝐶𝑃𝑈𝑟 ) = Variance( 𝑋𝑟

𝑋𝑃

) (8)

≈ 𝜇2𝑟

𝜇2
𝑃

[𝜎
2

𝑟

𝜇2𝑟
− 2

Covariance(𝑋𝑟 , 𝑋𝑃 )
𝜇𝑟 𝜇𝑃

+
𝜎2

𝑃

𝜇2
𝑃

] (9)

<
𝜇2𝑟

𝜇2
𝑃

[𝜎
2

𝑟

𝜇2𝑟
+
𝜎2

𝑃

𝜇2
𝑃

] (10)

=
(𝑘 + 1)
𝑘2

·
𝜎2

𝑃

𝜇2
𝑃

(11)

≈ 1

𝑘𝜇2
𝑃

𝜎2

𝑃 (12)

<
1

𝑘
𝜎2

𝑃 . (13)

The simplification from Expression 9 to Expression 10 holds

because the covariance between 𝑋𝑟 and 𝑋𝑃 is positive. The

simplification from Expression 12 to Expression 13 assumes

𝜇𝑃 > 1, which typically holds in a production environment.

For example, a production server typically has 80 or more

cores. If half of them are utilized, 𝜇𝑃 ≥ 40. Expression 13

shows that, similar to Expression 2, subroutine-level mea-

surements using the gCPU metric also reduce variance, en-

abling detection of small regressions.

Next, we show that for a small subroutine, a small regres-

sion in its gCPU directly corresponds to a small regression in
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its absolute CPU usage. Thus, despite being a relative metric,

gCPU is appropriate for regression detection.

Let 𝜇
𝑔
𝑟 denote the mean of gCPU𝑟 , where 𝜇

𝑔
𝑟 =

𝜇𝑟
𝜇𝑃
. Let ℎ%

denote the change in 𝜇
𝑔
𝑟 after 𝜇𝑟 increases by Δ:

ℎ% = 𝜇̃
𝑔
𝑟 − 𝜇

𝑔
𝑟 =

𝜇𝑟 + Δ

𝜇𝑃 + Δ
− 𝜇𝑟

𝜇𝑃
=

Δ(𝜇𝑃 − 𝜇𝑟 )
𝜇𝑃 (𝜇𝑃 + Δ) ≈ Δ

𝜇𝑃
.

The last step assumes that 𝜇𝑟 and Δ are small relative to 𝜇𝑃 .

In summary, we have shown that, when the gCPU of a sub-

routine is small, which is common in production, a small ℎ%

absolute regression in gCPU approximately corresponds to

anℎ% relative regression in the Linux process’s absolute CPU

usage. Thus, gCPU is appropriate for regression detection.

A.4 Resource Waste Due to Undetectable Regressions

Let𝑊 denote the aggregate fleet-wide resource waste due to

undetectable regressions smaller than the detection thresh-

old Δthreshold in Expression 1. Let𝑚 denote the fleet size (i.e.,

the total number of servers in the fleet), and assume the

number of collected samples (i.e., 𝑛 in Expression 1) is pro-

portional to𝑚. From Expression 1, it can be derived that the

resource waste as a fraction of the fleet size is given by:

𝑊 /𝑚 ∝
√︁
𝜎2/𝑚.

This indicates that the waste fraction decreases as the fleet

size increases, which is positive. However, the total waste𝑊

still grows with

√
𝑚:

𝑊 ∝
√
𝜎2𝑚.

In conclusion, to minimize fleet-wide waste due to unde-

tectable small regressions, it is crucial to also reduce variance

(𝜎2
). FBDetect significantly reduces variance by measuring

CPU usage at the subroutine level rather than at the overall

service level, as shown in Expression 2.
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