THEME ARTICLE: TOP PICKS FROM THE 2023 COMPUTER
ARCHITECTURE CONFERENCES

Contiguitas: The Pursuit of Physical Memory
Contiguity in Datacenters

Kaiyang Zhao, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
Kaiwen Xue, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
Ziqi Wang, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
Dan Schatzberg, Meta Platforms Inc., Menlo Park, CA, 94025, USA
Leon Yang, Meta Platforms Inc., Menlo Park, CA, 94025, USA

Antonis Manousis, Meta Platforms Inc., Menlo Park, CA, 94025, USA
Johannes Weiner, Meta Platforms Inc., Menlo Park, CA, 94025, USA
Rik Van Riel, Meta Platforms Inc., Menlo Park, CA, 94025, USA
Bikash Sharma, Meta Platforms Inc., Menlo Park, CA, 94025, USA
Chungiang Tang, Meta Platforms Inc., Menlo Park, CA, 94025, USA
Dimitrios Skarlatos, Carnegie Mellon University, Pittsburgh, PA, 15213, USA

Abstract—The unabating growth of the memory needs of emerging datacenter
applications has exacerbated the scalability bottleneck of virtual memory.
However, reducing the overhead of address translation will remain onerous until
the physical memory contiguity predicament gets resolved. To address this
problem, Contiguitas provides ample physical memory contiguity by design. We
identify that the primary cause of memory fragmentation in Meta’s datacenters is
unmovable allocations scattered across the address space that impede contiguity.
To this end, Contiguitas in the operating system separates movable allocations
from unmovable ones by placing them into two different dynamically adjustable
regions in physical memory. Furthermore, Contiguitas drastically reduces
unmovable allocations through hardware extensions that transparently migrate
unmovable pages while they remain in use. Our experiments in production at
Meta’s datacenters show that Contiguitas achieves end-to-end performance
improvements of 2-18%. Full-system simulations of the Contiguitas hardware show
that it can efficiently migrate unmovable allocations without affecting applications.
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FIGURE 1. Memory and TLB coverage of computing hard-
ware across generations.

of TLB entries remains stagnant, leading to minuscule
and shrinking TLB coverage. Google’s profiling further
revealed that approximately 20% of cycles are stalled
on TLB misses [1]. Unfortunately, this problem is only
bound to get worse due to: i) the inherent hardware
limits of TLB scaling, already surpassing L2 cache
latencies, ii) terabyte-scale memory capacity through
technologies like Compute Express Link (CXL), iii)
additional levels of page tables, iv) the increase of
memory-intensive applications, and v) upcoming confi-
dential computing platforms that place security checks
at page granularity during address translation.

A large body of prior research has focused on
reducing the address translation overhead. Conceptu-
ally, we can separate prior work based on the amount
of physical memory contiguity required and how it
is exploited. On the one hand, earlier works pro-
pose leveraging physical memory contiguity to back
the application dataset [2]. These approaches create
range-based translations by relying on large contigu-
ous physical memory. However, they face the funda-
mental challenge that it is very hard to create multi-
gigabyte contiguous physical address ranges to cover
the complete application dataset. On the other hand,
another line of research has explored alternative page
table structures such as hashed page tables [3]. Such
solutions aim to replace sequential multi-level page
tables and drastically reduce the cost of page walks by
accelerating page table accesses. Notably, they relax
the physical memory contiguity requirements to apply
not on the whole dataset, but only on the page table
organization. However, they impose strict requirements
for physical memory contiguity availability on the critical
path of page table creation. Several other architectural
extensions that implicitly rely on contiguity [4], [5] are
hindered by the same fundamental challenge.

Today’s operating systems (OS), such as Linux,
have mostly relied on 2 MB Transparent Huge Pages
(THP) that opportunistically provide 2MB pages to
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land performance improvements. Unfortunately in to-
day’s systems, finding physical contiguity even for
2MB pages is often hard due to memory fragmen-
tation [6], [7]. THPs have also been under scrutiny
due to performance implications such as latency spikes
and memory bloating. Alternative approaches, such as
userspace allocators, still rely on the OS to provide
physical contiguity and larger mappings.
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FIGURE 2. Contiguity availability as the percentage of free
memory.

In this work, we start with a detailed investigation
of physical memory contiguity at hyperscale across
Meta’s datacenters. We sampled servers across the
fleet and the memory fragmentation distribution is
shown in Figure 2. 23% of servers do not even have
physical memory contiguity for a single 2MB huge
page. We also find that it is practically impossible to
dynamically allocate 1 GB pages in production. Fur-
thermore, our analysis shows that there is little to
no correlation between memory contiguity and server
uptime, with the Pearson correlation coefficient be-
tween server uptime and the number of free 2MB
pages being only 0.00286. Pertinently, this means that
fragmentation affects all servers. In practice, servers
can quickly get heavily fragmented within the first
hour after boot-up while the mean server uptime is
days or weeks—turning memory fragmentation into a
major challenge. Finally, our study exposes unmovable
memory allocations as the root cause for the lack of
physical memory contiguity. In particular, we identify
several sources of unmovable allocations, including
networking buffers, slab, filesystems, and page tables.

To address these issues, we introduce Contigui-
tas with the goal of eliminating fragmentation due to
unmovable allocations. Contiguitas separates movable
allocations from unmovable ones by placing them into
two different regions and dynamically adjusting the
boundary of the two regions on demand. To avoid
wasting memory in the unmovable region, Contiguitas
solves two problems: i) how to dynamically resize the
unmovable region and place unmovable allocations;
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and i) how to drastically reduce unmovable allocations.
For the first problem, Contiguitas performs resizing
by tracking the demand for unmovable allocations.
Moreover, it reduces internal fragmentation of the un-
movable region by differentiating types of allocations.

For the second problem, Contiguitas focuses on
unmovable pages that cannot be moved with soft-
ware alone because access to such pages cannot
be blocked for a migration to take place. At Meta,
networking allocations account for 73% of unmovable
pages. We expect unmovable pages to become an in-
creasingly bigger problem because of new input/output
(I/0) technologies such as kernel-bypass and Remote
Direct Memory Access (RDMA) for networking and
storage, Graphics Processing Units (GPU), and other
accelerators that heavily really on unmovable pages.

To this end, Contiguitas introduces a set of surgical
hardware extensions in the last-level cache (LLC) that
enable the fransparent migration of unmovable pages
while in use. Contiguitas’s design builds off of two
ideas: First, Contiguitas introduces migration mappings
in the LLC, enabling hardware to redirect traffic to
the appropriate cacheline of each page based on the
progress of the migration. Second, Contiguitas relaxes
the TLB shootdown operation from being synchronous
and requiring acknowledgements from all victim TLBs
to a local TLB invalidation that can be performed
by each core independently and in a lazy manner.
Naturally, movable page migrations can also benefit
from this hardware support.

Our experiments in Meta’s production datacenters
show that Contiguitas successfully confines unmovable
allocations, leading to significant performance gains.
Full-system simulations showcase the effectiveness of
Contiguitas’s hardware. We are currently in the process
of upstreaming Contiguitas into Linux.

The goal of Contiguitas is to provide ample physical
memory contiguity by reducing memory fragmentation
due to unmovable allocations. To that end, Contiguitas
redesigns memory management in the OS to confine
unmovable allocations and completely separate them
from movable ones. In addition, Contiguitas drastically
reduces unmovable pages in datacenters. Specifically,
Contiguitas introduces a set of hardware extensions
in the LLC that enable the transparent migration of
unmovable pages while in use.

Contiguitas Overview.
Figure 3 provides a high level overview of Contigu-
itas. First, Contiguitas redesigns memory manage-
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FIGURE 3. Contiguitas design overview.

ment in the OS to confine unmovable allocations
and completely separate them from movable ones
(Step @), preventing unmovable allocations from scat-
tering across the address space. Then, Contiguitas dy-
namically resizes regions in response to memory pres-
sure (Step @). Finally, Contiguitas drastically reduces
unmovable pages through hardware extensions in the
LLC that enable transparent migration of unmovable
pages while in use (Step (3)). Naturally, these hardware
extensions can further be leveraged by movable pages.

Unmovable Confinement.

The first design principle of Contiguitas is to strictly
separate unmovable from movable allocations using
two dedicated regions, movable and unmovable re-
gions in the physical address space. Allocations are
confined in their respective region. Contiguitas cate-
gorizes the physical pages based on their addresses
and keeps them on distinct free lists for each region.
Memory in each region can only be allocated from
pages in the free lists belonging to that region. When
a page is freed, it is returned back to its respective list.
This approach simplifies the critical path of allocations
as the OS can quickly pick a free page while avoiding
mixing different types of allocations. For allocations
that are first allocated as movable but later become un-
movable, Contiguitas migrates them to the unmovable
region and marks them as unmovable. This approach
avoids the dynamic pollution of the movable region and
subsequent compaction failures.

The crucial part in designing confinement is the
sizing of the unmovable region. If it is too big, unused
memory in the unmovable region is wasted while there
is limited movable memory for the applications, causing
frequent reclaims, swapping, or even allocation fail-
ures. On the other hand, if the unmovable region is
too small, it may fail unmovable allocations. There-
fore, Contiguitas dynamically balances the sizes of the
movable and unmovable regions while not negatively
affecting application performance.

There are three major challenge in dynamic resiz-
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ing of the unmovable region. The first challenge is to
move resizing operations off the critical path of memory
allocation. Contiguitas performs resizing off the critical
path of memory allocation to avoid latency overheads.
This is accomplished by monitoring the amount of free
memory when periodic memory reclaim is triggered
by the kernel. Contiguitas extends reclaim to wake
up a kernel thread to perform resizing when the free
memory in either region falls below a low-watermark
threshold.

The second challenge is to decide when and how
much to resize. Contiguitas introduces the concept
of per-region memory pressure and extends Pressure
Stall Information (PSI) [8] to track time wasted due to
lack of free memory in the movable and unmovable
region separately, which is then used to calculate
the expansion/shrinking amount influenced by tunable
parameters.

The third challenge is to ease resizing and reduce
data movement. Contiguitas introduces a bias to prefer
physical pages further away from the region border.
Some unmovable allocations that are inherently long
lived, e.g., kernel code pages, are safely placed by
Contiguitas early on, at the end of the unmovable
region that is farthest from the movable region. On
the other hand, pages that are initially in the movable
region and later on migrated to the unmovable region
often exhibit short lifetimes. In general, Contiguitas
prefers allocating pages away from the region border
as long as sufficient free space is available. This
approach increases the chance that resizing will be
successful and need little data movement.

Hardware Migration of Unmovables.
The second design principle guiding Contiguitas is to
drastically reduce the amount of unmovable allocations
by turning them into movable ones. Our study at
Meta’s datacenters revealed that a significant portion
of unmovable allocations used for input/output (I/O) are
impossible to move as access to the page cannot be
blocked for a software migration to take place.

Hardware support is required because it is impos-
sible for software to move such pages as it cannot
atomically perform both the translation update and the
page copy operation. Hence, software has to block
access to the page for the duration of page migration
in order to avoid spurious writes to it. Even if access
to the page could be blocked, software page migration
induces a long downtime due to (a) TLB shootdowns
that scale poorly with the number of victim TLBs, and
(b) the page copy.

To this end, Contiguitas-HW enables transparent
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FIGURE 4. Contiguitas hardware overview.

page migration while the page remains in use. Such
migrations can substantially reduce the size of the un-
movable region and lead to more efficient defragmen-
tation and memory management as the vast majority
of pages can be moved on demand. While Contiguitas-
HW is motivated by unmovable allocations, its design
is suitable for both movable and unmovable allocations.

The hardware extensions of Contiguitas-HW are lo-
cated in the LLC as shown in Figure 4. Contiguitas-HW
targets a multi-core processor with a cache-coherent
interconnect. The hardware platform further includes
an Input-Output Memory Management Unit (IOMMU)
with local TLBs.

At a high level, Contiguitas-HW aliases a physical
page under migration with a destination page and redi-
rects appropriate traffic to the destination page based
on the progress of the migration. Specifically, a page
migration is initiated in Step (D) by the OS that provides
the source and destination physical page numbers
(PPN) to the Contiguitas-HW. Contiguitas-HW stores
them in a metadata table shown in Figure 4(b) along
a Pir field that points to the next line to be copied [3],
and enables access redirection. The OS then modifies
the page table entry to point to the destination page
and starts local TLB invalidations, shown in Step (®.
In Contiguitas-HW, TLB shootdowns do not require
inter-processor interrupts (IPl), as both mappings are
concurrently active during the migration.

During this process, a page may be accessed with
either the source or the destination mapping. If a re-
quest hits in the private caches, it is serviced normally
as in a regular cache hit. As shown in @), on a miss
the Contiguitas-HW checks whether a line is currently
stored in private caches with the opposite mapping of
the request i.e., if a request is for the source mapping
and the line is stored with the destination mapping,
and vice versa. If so, it invalidates any cached copy.
Otherwise, the request is serviced regularly. This in-
variant allows the caching of lines under migration as
only the source or the destination mapping is active
in the private caches. When the TLB invalidations are
complete, the OS notifies the Contiguitas-HW to start
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FIGURE 5. Potential memory contiguity as a percentage of
total memory.

the copy. At this point only the destination mapping
is active at any given TLB. Contiguitas-HW copies a
cacheline by bringing it into the LLC (Step @) and
copying it from the source to the destination (Step 3)).
Finally, it increments Ptr. This process continues until
the page is copied and Contiguitas-HW notifies the
OS. The full paper discusses how Contiguitas-HW can
alternatively be implemented through noncacheable
memory accesses and how it supports sliced LLCs.

We build the OS component of Contiguitas into Linux
and run our experiments in Meta’s production data-
centers with four production workloads: a continuous-
integration service (Cl), a web server (Web), and two
caching services (Cache A and Cache B).

Potential Memory Contiguity

To quantify the impact of Contiguitas on memory
contiguity, we compare each workload’s steady state
under Linux and Contiguitas. Specifically, we quan-
tify the contiguous regions that can be formed if we
hypothetically run a perfect software compaction in
order to service allocation requests of 2 MB, 32 MB,
and 1 GB. Figure 5 shows the results. With Linux we
see that some 2 MB allocation are possible given that
less than half the memory is composed of unmovable
2MB pages as we discussed above. However, Linux
struggles as we search for larger contiguous regions,
and fails to find even a single 1 GB page. On the other
hand, Contiguitas, by design, isolates the unmovable
region and hence the whole movable region can po-
tentially be used after compaction for large contiguous
allocations, even 1 GB pages.
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End-to-end Performance

To measure Contiguitas’s improvements to end-to-end
performance due to increased memory contiguity, we
use requests per second under certain latency SLAs
based on the characteristics of each workload. We
consider two setups, Full Fragmentation and Partial
Fragmentation. Full Fragmentation represents the case
where a workload lands on a server whose mem-
ory is already fully fragmented. Partial Fragmentation
represents the case where a workload lands on a
partially fragmented server that is representative of the
majority of servers at Meta. Figure 6 shows the re-
sults. Contiguitas achieves performance improvements
between 2-9% for partially fragmented servers that
represent the majority of the servers, and between
7-18% for highly fragmented servers that represent
nearly a quarter of Meta’s fleet. Notably, Contiguitas’s
contiguity gains enable Web, one of Meta’s largest
services, to dynamically allocate 1 GB huge pages,
leading to a 7.5% performance win that is unattainable
with 2 MB pages alone. We are currently in the process
of upstreaming the operating system component of
Contiguitas into Linux [9].

Hardware Evaluation

We use full-system simulations to show that
Contiguitas-HW  efficiently  migrates  unmovable
allocations without affecting application performance.
We consider two open source applications Memcached
and NGINX to cover applications that do and do not
benefit from huge page availability. Even at a rate
of 1000 pages migrated per second, which would
be unwarranted for a real environment, Contiguitas-
HW does not have an impact on both applications’
performance. When combined with the benefits
of contiguity and 2MB huge pages, Memcached
performance improves by 7%.

Furthermore, Contiguitas-HW scales well with the
number of TLBs, keeping the page unavailable time
during a page migration constant and equal to a local
TLB invalidation, whereas under status quo the page
unavailable time increases linearly.

Overall, Contiguitas-HW does not negatively impact
applications that do not benefit from contiguity while
improving contiguity for those that do.

Contiguitas is a holistic solution that addresses the
long-standing problem of memory contiguity in data-
centers. Contiguitas is already having a major impact
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FIGURE 6. End-to-end performance over Meta’s production
workloads. The red bar of Contiguitas for Web shows the
performance gains from 1GB pages.

as it is in the process of being upstreamed in the Linux
kernel, and Meta is actively working on deploying it in
production.

A Holistic Solution for Memory Contiguity in
Datacenters.

Memory contiguity is a fundamental requirement for
a vast body of work that aims to reduce the cost of
address translation. However, we identify that mem-
ory contiguity is scarce resource in production data-
centers. Contiguitas is the first solution that resolves
this problem and provides ample memory contiguity
by design. Contiguitas addresses the challenges of
fragmentation due to unmovable allocations that are
prevalent in datacenter and will only get worse due
to RDMA, GPUs, Network Interface Controllers (NIC),
accelerators, CXL, and devices that rely on unmovable
pinned memory. Contiguitas introduces a future-proof
OS memory management design that defragments the
physical address space by isolating unmovable alloca-
tions. Finally, Contiguitas drastically reduces unmov-
able pages through hardware extensions that enable
the transparent migration of unmovable and movable
pages while in use.

Understanding Memory Fragmentation, TLB,
and Page Walk Characteristics in Datacenter
Applications.

Contiguitas is the first detailed study of memory frag-
mentation and unmovable pages in datacenters. It
further sheds light into the limited TLB coverage and
the cost of address translation of data and instruc-
tions. Contiguitas shows that page walk cycles can
account for close to 20% of total cycles in Meta’'s
datacenters for major workload classes, such as Web
serving, key-value stores, Ads, and graph data stores.
Importantly, our study reveals that almost a quarter of
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the servers do not have enough contiguity for even a
single 2MB allocation. It further identifies that there
is little correlation between fragmentation and server
uptime, leading to heavily fragmented servers across
the fleet within the first hour of uptime. Finally, we
present the causes of fragmentation and especially
unmovable allocations, 73% of which originate from
networking. The results will guide future research to
take into account the memory and address translation
characteristics of datacenter workloads.

Major Performance Gains for Production
Workloads.

Contiguitas’ ample memory contiguity enables the use
of huge pages of 2MB and even 1GB in production
at Meta’s datacenters. Our experiments with real traf-
fic across major workload classes demonstrate that
Contiguitas can provide significant performance gains
between 2-18%.

Upstreaming into Linux and Industry Impact.
We are upstreaming Contiguitas into the Linux kernel.
The first set of patches has already been submitted to
the kernel mailing list [9] and has been well-received.
We are refining remaining patches that will bring ad-
ditional Contiguitas features to the Linux kernel. After
these steps are complete, Meta will deploy Contiguitas
in production to materialize its significant benefits at
scale.

Memory folios with Contiguitas.

Memory folios [10] is a promising solution to support
larger page sizes in the Linux kernel. Folios have the
potential to help reduce the large overhead of manag-
ing memory in base 4KB pages. A primary requirement
for folios is contiguity for larger allocations. Contiguitas
makes folios practical by providing the needed conti-
guity. Furthermore, the combination of Contiguitas with
folios is a promising research direction that will help
reduce the major cost of memory movement due to
defragmentation.

Large Block Sizes Support in SSDs.

Large Block Sizes (LBS) [11] is a promising solution to
improve 1/O performance by leveraging the increased
capabilities of modern flash storage devices with larger
mappings. Existing solutions rely on 4KB mappings,
despite the substantial benefits of larger mappings
such as 16KB or larger sizes. Contiguitas provides the
necessary contiguity for such solutions to be integrated
into the kernel and improve I/O and page cache per-
formance.
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Contiguitas Enables New Research
Directions in OS and Computer Architecture.
Contiguitas enables future research on how to resolve
the address translation cost. Contiguitas provides the
contiguity required by techniques such as huge pages,
TLB compaction, larger translation ranges, prefetching,
alternative virtual memory designs, and hashed page
tables. With ample memory contiguity, Contiguitas en-
ables a large space for research explorations of im-
proved TLBs coverage, page walk latency reduction,
and memory management.
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